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1. Introduction

The structure of the US banking industry has changed dramatically over the past few decades.

Regulatory changes are widely regarded as a key factor behind these trends. The Riegle-

Neal Interstate Banking and Branching Efficiency Act (1994), for example, removed many

restrictions on branch-network expansion, allowing bank holding companies to acquire banks

in any state. Subsequently, the industry witnessed a wave of geographical expansion and

consolidation. Understanding the effects of these changes requires thinking through multiple,

intertwined economic mechanisms, from changes in competition to reduced idiosyncratic risks

through diversification.

In this paper, we use a structural approach to quantify these effects on bank deposit markets

and through them, bank lending. We formulate a general equilibrium, spatial model of deposit-

taking and lending by heterogeneous banks competing across a large number of oligopolistic

markets (US counties in our empirical implementation). Banks face market-specific shocks to

deposit demand, so operating in more locations reduces funding risk through diversification.1

We derive a closed-form expression for deposit rates as the product of a standard markup

and a marginal ‘cost’. The latter depends on funding volatility: specifically, on how deposit

inflows covary with the marginal benefit of funds. We discipline the model’s rich heterogeneity

using detailed bank- and county-level data, and use the calibrated framework to disentangle

the effects of funding risk and markups on deposit pricing and, in turn, on aggregate deposit

flows and lending.

We begin with some reduced-form evidence to motivate our analysis. We confirm that, since

the 1990s, banks have significantly increased the number of counties in which they operate. This

is particularly relevant given our second finding: deposit growth at the bank level is as volatile

as loan growth, and more than one-third of this variation can be attributed to fluctuations in

county-level deposits. We also find that banks become less exposed to fluctuations in deposit

flows as they operate in more locations. On the competition front, we find that national-level

market concentration in deposit markets (measured by HHI) has increased since the 1990s,

while changes in county-level concentration show a more mixed pattern. While these patterns

on deposit risk and market concentration are informative, their overall implications for deposit

flows, interest rates, and lending are difficult to interpret without a structural framework.

1That banks face risk in their deposit inflows has been documented by Drechsler, Savov, and Schnabl (2017)
and also features prominently in a few recent papers, e.g. Aguirregabiria et al. (2016), Corbae and D’Erasmo
(2022) and Bolton et al. (2023). Our framework also allows for idiosyncratic risk in lending returns, but we find
little interaction with deposit pricing, the key object of interest in this paper.



Geographic Funding Risk and Market Power in Deposit Markets 2

Our model features a representative household which values, in addition to consumption,

liquidity services from deposit holdings. To capture imperfect substitutability across banks and

locations, we use a nested aggregate with constant elasticity of substitution (CES) at each nest.

Deposits at different banks within a county are aggregated into a county-level composite, which

is then accumulated to generate the economy-wide bundle. The latter aggregation is subject to

shocks that shift the household’s preferences for deposits in a county. Since an individual bank

does not operate in all counties, it is exposed to idiosyncratic risk. Curvature in bank payoffs

then generates a motive for diversification. In our baseline specification, curvature arises from

a combination of loan commitments and frictions in the inter-bank market, but we show that

the results are quite robust to alternative sources of curvature—such as, diminishing marginal

returns on lending, risk aversion, or regulatory constraints.

Banks compete by offering interest rates on deposits, assumed to be set before observing

idiosyncratic shocks. How banks set rates across the different markets is the subject of some

debate in the literature. A number of papers (Radecki, 1998; Heitfield and Prager, 2004; Granja

and Paixao, 2021; Begenau and Stafford, 2022) argue that banks do not choose rates market-

by-market but instead engage in some degree of ‘uniform pricing’, i.e. set similar rates across

a number of markets. Our micro data on deposit rates are broadly consistent with this view,

though there is residual variation at the county-level. Rather than take a stand on the exact

degree of uniform pricing, we analyze separately two polar cases: in the first, banks are assumed

to engage in ‘uniform pricing’, where each bank sets a single rate across all the markets in which

it operates. In the second case, banks engage in ‘local pricing’, i.e. set interest rates separately

for each county they operate in. The actual pricing behavior likely lies somewhere between

these two polar cases. As we will show, the economic forces and the main takeaways about the

effects of geographic risk and market power are similar under both assumptions, even if the

exact formulae and magnitudes differ somewhat, pointing to the robustness of our insights.

The optimal deposit spread—the difference between the deposit rate and the return on an

asset without liquidity benefits—is given by a markup times the marginal cost of providing

deposit services. In our oligopolistic setting, markups depend on substitution elasticities and

appropriately defined market shares. Intuitively, an oligopolistic bank internalizes the effect of

changes in its deposit rate on county-level deposits. Since the elasticity of substitution across

banks within a county is higher than the elasticity across counties, markups increase with a

bank’s market share. The two pricing protocols differ in the relevant notion of market share:

under uniform pricing, markups depend on the bank’s average market share across all counties,
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whereas under local pricing, the markup is county-specific and determined by the bank’s share

in that county.

The marginal cost includes a risk-premium component, a novel feature of our framework.

Under uniform pricing, there is a single risk premium for the entire bank, which is a function

of the variability of its total deposit flows. This variability, in turn, depends on the covariance

matrix of county-level shocks. All else equal, the less diversified the bank, the higher this

variability and thus the risk premium. Consequently, the bank charges a larger spread (or

equivalently, offers a less attractive rate to depositors). Geographical diversification reduces

this risk premium and, therefore, lowers effective marginal costs and deposit spreads. Under

local pricing, the risk premium is bank- and county-specific, but the intuition remains similar—

the more positively a county’s deposit demand shock covaries with those of other counties in

which the bank operates, the higher the risk premium. As with uniform pricing, diversification

reduces risk, and through this channel, deposit spreads.

The model lends itself to a transparent calibration strategy using detailed micro-data on

deposits and spreads. Data on bank-county level deposits are taken from the FDIC’s Summary

of Deposits (SOD) for the period 1990-2019. We use two sources of data for deposit rates—

branch-level rates on certificate of deposits (CDs) and money markets (from RateWatch) and

bank financial statements. Our calibration strategy has two interconnected parts. The first

part leverages the richness of micro-data to estimate key parameters, such as the within- and

across-market elasticities of substitution and the curvature in the banks’ payoff function. The

second one combines the estimated parameters from the first part with the data to recover

preference and cost shifters and through that, idiosyncratic risks.

We use the calibrated model to quantify the effect of risk premia and markups on spreads,

both in the cross-section and over time. The results point to a significant risk premium-

component in deposit spreads especially among smaller banks, which typically operate in a

limited number of locations. For example, for banks in the smallest size decile, risk premia raise

deposit spreads by over 0.40 log points—equivalent to nearly a 50% increase. The spreads of

the largest banks, on the other hand, contain a much lower compensation for funding risk, with

spreads pushed up by around 0.15 log points. Smaller banks also tend to have somewhat lower

average market shares—and thus lower markups—than their mid-sized and larger counterparts,

although the differences are small.

Across counties, risk premia drive up deposit spreads by about 0.40 log points in the small-

est/poorest counties. For the median county, the risk-related increase in spreads is almost 25%.
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Markups also have their largest impact in these smaller and poorer counties, adding up to 0.55

log points. Combined, the risk and markup channels increase spreads by over 0.90 log points

among the smallest/poorest counties.

Next, we analyze changes in the effects of risk premia and markups on deposit spreads over

the last couple of decades (specifically, between 1993 and 2019). We find that geographical

expansion and the associated diversification benefits have exerted a significant downward pres-

sure on deposit spreads. These changes are most pronounced for the smallest/poorest counties,

where the decrease in marginal costs achieved through lower risk premia imply a reduction

of spreads of almost 20%. In the aggregate, the reduction in risk premia lowered the cost of

deposit services by about 3%. Changes in markups are more modest, across all counties. Under

uniform pricing, the model shows markups declining by about 5% in the smallest counties and

remaining more or less unchanged in the largest counties. This pattern emerges despite the rise

in reduced-form measures of national concentration, highlighting the importance of a carefully

calibrated structural model like ours for drawing meaningful insights about competition. Un-

der local pricing, markups have remained largely flat over the past three decades, with little

variation across locations.

Overall, the changes in the structure of the banking industry over the past three decades have

benefited the smallest and poorest counties in two key ways: through diversification-induced

reductions in risk premia and, to a lesser extent, lower markups. We show that the decline

in risk premia was primarily driven by extensive margin dynamics—namely, bank entry and

exit—with most of the effect accounted for by entry from out-of-state banks.

We leverage the tractability of our model to perform a series of counterfactual experiments.

In the first, we increase curvature in bank payoffs, or equivalently, their aversion to deposit

risk.2 Deposit spreads rise with substantial regional heterogeneity: smaller counties, which rely

more heavily on less diversified banks, experience the largest increases. Our second experiment

studies the effects of further consolidation, specifically the acquisition of local banks. These

mergers reduce risk premia, especially in smaller counties and when the acquirer is a large

regional or national bank. The effect on markups is modest and the sign depends on the

pricing protocol: under uniform pricing, they decline but rise under local pricing.

Next, we examine changes in the spatial distribution of economic activity, specifically with

large markets growing in relative size. This is meant to capture a continued rise in spatial

inequality, consistent with trends observed in recent decades. The reallocation increases banks’

2One interpretation of such a change is greater frictions in interbank markets.
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exposure to larger, safer markets, which lowers their overall deposit funding risk. Small and

medium-sized counties benefit the most, exhibiting larger reductions in deposit risk premia. As

large markets become more dominant, smaller regions may also become increasingly vulnerable

to shocks originating in those areas. To assess this, we consider a counterfactual in which we

double the volatility of deposit demand in large counties. This directly raises risk premia and

deposit spreads in large counties, but we find that nearly half the increase spills over to small

and medium-sized counties.

We extend the baseline model in several directions, both to demonstrate the robustness of

our analysis and to generate additional insights. First, we enrich the asset side of banks’

balance sheets by allowing for multiple asset types, including “local” loans—i.e., loans linked

to the branch network—and securities. This version not only yields the same expression for

optimal deposit spreads—showing that our baseline decomposition holds more generally—but

also allows us to trace the effects of deposit risk and bank consolidation on local lending.

We find that increases in deposit risk premia can lead to large declines in lending, not only

in regions where banks are less geographically diversified, but also in larger, more diversified

states. In addition, we show that the acquisition of local banks by large regional banks reduces

local lending in smaller regions, as larger banks tend to redirect credit toward more profitable,

higher-income markets. These effects are especially pronounced in areas where smaller banks

hold large market shares.

Second, we show how additional assets and sources of liquidity services (e.g. cash) can be

tractably incorporated into our framework. The main change relative to the baseline framework

is that the substitutability of deposits with these assets now influences equilibrium markups. We

calibrate this extension to match the aggregate cash-to-deposits ratio as well as its sensitivity

to exogenous changes in interest rates. We find that the effects of risk and markups on deposit

spreads remain similar to those in our baseline model, both in the cross-section and over time,

though markup variation plays a somewhat larger role.

Related literature. This paper contributes to several strands of the literature. Our focus

on deposit flow risk is shared by Aguirregabiria et al. (2016), Corbae and D’Erasmo (2022)

and Bolton et al. (2023). The first two papers also analyze geographical expansion, but treat

deposit flows as exogenous. Our structural approach is complementary to recent empirical work

on geographical expansion and diversification (see, for instance, Levine et al., 2021; Kundu

et al., 2021; Kundu and Vats, 2021; Doerr, 2024).3 We differ from these papers in our explicit

3Empirical analysis of diversification of other types of risks (notably on the lending side) are presented in Stiroh
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modeling of the market for deposits, while taking location choices as given. This allows us to

capture the interplay of risk and diversification with competition and markups.

Second, these interactions also distinguish our work from that of Ji et al. (2023) and Ober-

field et al. (2024), who study location choices in spatial banking models that abstract from risk.

These papers highlight how primitives (e.g., size) of the markets for deposits and loans interact

to determine optimal location decisions of banks. For example, Oberfield et al. (2024) show that

deregulation induced large US banks to expand into markets that were relatively abundant in

deposits relative to lending opportunities.4 Our analysis, which focuses on how location choices

have reshaped funding risks and concentration in deposit markets, complements their findings

and helps paint a more complete picture of the effects of geographical expansion. Methodologi-

cally, our contribution is a rich yet tractable framework combined with a transparent empirical

strategy that has applicability beyond the questions of interest in this paper.

Third, our approach to modeling competition is widely used in the macroeconomics and

trade literature. Key references include Atkeson and Burstein (2008), Hottman et al. (2016),

Rossi-Hansberg et al. (2020) and Berger et al. (2022). We extend and adapt this well-known

framework to the banking context, where oligopolistic ‘firms’ compete in multiple markets

subject to idiosyncratic risk.

Finally, our paper relates to the literature on banks’ market power. Work by Drechsler

et al. (2017) and Wang et al. (2020) analyze how market power affects the transmission of

monetary policy through deposit and lending channels. Similarly, Egan et al. (2017) study the

implications of banks’ oligopolistic competition in markets for uninsured deposits on financial

fragility. Other studies examine how banks’ market power affects credit supply and financial

stability (Black and Strahan, 2002; Corbae and D’Erasmo, 2021; Carlson et al., 2022; Herkenhoff

and Morelli, 2025), as well as adverse selection in lending markets (Crawford et al., 2018). We

contribute to this literature by quantifying the aggregate effects of banks’ market power on the

deposit side, both in the cross-section and over time.

(2006); Laeven and Levine (2007); Baele et al. (2007); Cetorelli and Goldberg (2012); Goetz et al. (2016);
Gilje et al. (2016); Chu et al. (2019); Correa and Goldberg (2020); Doerr and Schaz (2021); Goetz and Gozzi
(2022); and Granja et al. (2022). Recently, D’Amico and Alekseev (2024) study bank funding and financial
integration—measured using dispersion in loan rates—during the era of branching restrictions (1953-1983).
4In recent work, Aguirregabiria et al. (forthcoming) analyze the geographic dispersion and imbalances between
deposits and local lending. Unlike our framework, their model abstracts from considerations related to banks’
geographic diversification.
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Figure 1. Banks Geographical Expansion

Number of counties in which banks operate Number of banks operating in each county

Notes: The left panel shows the average number of counties in which banks operate (in logs), by bank size—
measured in total deposits. The right panel displays the number of banks operating in each county (in logs),
by county size—also measured in total deposits. Red dots correspond to 1993 data; blue dots to 2019.

2. Motivating Facts

We begin by documenting banks’ geographical expansion since the 1990s. The left panel

of Figure 1 shows the relationship between size (measured using deciles of total deposits) and

the average number of counties a bank operates in. The figure reveals that the expansion in

geographic reach has been primarily driven by medium and large banks. By 2019, the largest

banks in the sample (deciles 9 and 10) operated in five times as many counties as they did before

the Riegle-Neal Act (1994). The right panel shows that these changes are quite broad-based:

we observe an increase in the number of active banks in both smaller and larger counties.

Figure 2 depicts banks’ geographical expansion from a county-perspective. For each county,

it shows the share of local deposits held by banks that operate in at least 10 other counties.

This share has increased markedly since the 1990s. The rise has been particularly evident in

some regions (e.g. parts of the Midwest).

Next, we document some facts about cross-sectional variability in deposits. Note that these

are reduced-form patterns: later, we use the model to recover the underlying structural shocks.

Our purpose here is to show that idiosyncratic deposit flow risk is significant. For example,

the cross-sectional standard deviation of the annual growth rate in deposits at the bank-level is

15%, comparable to the loan growth variability. Similarly, at the county level, after controlling

for county and year fixed effects, the standard deviation of deposit growth is 14%.5

5These patterns are consistent with prior work documenting substantial volatility in deposits, particularly at
the branch level (see, for instance, Drechsler et al., 2017). Similarly, Kundu et al. (2021) show that the volatility
of the bank-level deposit-to-asset ratio is similar in magnitude to that of the loan-to-asset ratio. See Appendix
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Figure 2. Share of deposits in banks that operate in ≥ 10 counties

1993 2019

Notes: The maps show county-level shares of deposits held by banks that operate in 10 or more counties. The
left panel is for 1993, while the right panel shows the results for 2019.

To assess the potential for diversification, we explore the role of county-level deposit growth

changes in explaining the variation in total deposits at the bank-level. We define total deposits

for bank j at time t as Djt =
∑

i∈Mj,t
Dijt, where Mj,t denotes the set of counties in which

bank j operates at t. For each bank, we use the county shares based on the first year in which

the bank is observed in a given county as proxy for exposure:6

ω0
ij =

Dij,t(0)∑
i∈Mj

Dij,t(0)

.

We then combine these weights with county-level deposits (net of year fixed effects) to predict

bank-level deposits, log D̂jt.
7 Table 1 then reports the within-R2 from the following regression:

logDjt = β log D̂jt + γj + γt + ϵjt.

It shows that county-level variation in deposit flows explains about one-third of banks’ residual

deposit fluctuations.

Appendix B provides additional evidence suggestive of diversification gains. It shows that

the volatility of bank-level deposits declines with the number of counties in which a bank

operates—even after controlling for bank and year fixed effects—suggesting that geographic

expansion meaningfully reduces banks’ exposure to deposit risk.

Figure B.1 for details.
6This approach avoids understating the importance of counties that were added during bank expansion, which
was common during our sample period.
7Formally, we first regress county-level deposits logDit = log

∑
j Dijt on year fixed effects and extract residuals

log D̂it. The predicted deposits for bank j is then given by D̂jt =
∑

i∈Mj,t
ω0
ijD̂it where ω

0
ij are the base-year

county exposures of the bank.
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Table 1. Variation in Bank-level Deposits driven by County-level Changes

Within R2

FEs All banks ≥ 5 counties ≥ 10 counties ≥ 25 counties

Bank 0.50 0.70 0.76 0.80
Year 0.53 0.62 0.60 0.55
Bank and Year 0.31 0.33 0.38 0.40

Notes: The table reports the within-R2 from the regression logDjt = log D̂jt+αj +αt+ ϵjt, where Djt denotes

actual bank-level deposits and D̂jt is the predicted value based on exposure to county-level shocks. Each row
corresponds to a different set of fixed effects (bank, year, or both), while each column presents results for
different subsamples of banks: all banks, and those operating in more than 5, 10, or 25 counties..

Figure 3. Concentration in Deposit Markets

National-level Herfindahl Index County-level Herfindahl Index

Notes: The left panel shows the national-level HHI for deposits, defined as HHIt =
∑

j

(
Djt∑
j Djt

)2
. The right

panel shows a histogram of changes in county-level HHIs between 1993 and 2019. County-level HHI is defined

as HHIit =
∑

j∈i

(
Djit∑
j∈i Djit

)2
, where Djit denotes deposits held by bank j in county i at time t.

Our final set of facts pertains to market concentration. The left panel of figure 3 shows that

the Herfindahl-Hirschman indices (HHI) for bank deposits at the national level (left panel) have

risen steadily since the mid-1990s. The changes in county-level HHI (the right panel) show a

more mixed pattern: a number of counties experienced significant increases in concentration,

while many others saw a decline.8 The overall effect on deposit markups is hard to pin down

without an explicit model of competition.

The facts presented in this section show that banks’ geographical expansion affected deposit

markets in complicated ways. The structural model used in the rest of the paper will help us

quantify these effects and conduct counterfactuals.

8Appendix Figure B.4 displays the level of the HHIs and highlights that deposit markets are more concentrated
in smaller counties.
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3. The Model

We lay out an equilibrium model of banks operating in multiple oligopolistic markets. The

economy features a representative household and a large number of heterogeneous banks. The

household uses its endowment to provide funds to banks in the form of equity, deposits and

non-deposit funding (i.e., wholesale funding and interbank lending). Deposits provide liquidity

services to the household. Banks invest (or equivalently, lend out) the funds at their disposal.

For simplicity, we model all these as intra-period transactions, allowing us to work with effec-

tively a static setting.

There is a continuum of heterogeneous deposit markets (counties), indexed by i, each with a

finite number of operating banks. A given bank does not operate in all markets, exposing it to

idiosyncratic risk. Banks act as oligopolists in deposit markets and compete by setting interest

rates on deposits.

We start by deriving analytical expressions for a number of objects of interest, notably

deposit spreads, risk premia, and markups. We exploit these to devise a simple and transparent

empirical strategy in Section 4.

3.1. Households

The economy has a representative household, which is assumed to be endowed with W̄ units

of consumption goods. It can invest these funds in three different assets: bank equity (denoted

by E), deposits (described in more detail below), or non-deposit funding to banks. In our

baseline specification, deposits are the only source of liquidity services. Section 8 extends the

model to incorporate other assets providing liquidity benefits (e.g., cash).

Let Dij denote the household’s deposits held with bank j in county i. Deposit services across

different banks and markets are aggregated using a nested CES specification—the first level

aggregates Dij of different banks in county i to construct a county-level composite Di. The

second level then combines these composites into an economy-wide aggregate D. Formally:

D =

(∫ 1

0

ϕiD
θ−1
θ

i di

) θ
θ−1

and Di =

(
Ji∑
j=1

ψijD
η−1
η

ij

) η
η−1

. (1)

The parameter θ > 1 denotes the elasticity of substitution across county-level deposits, while

η > 1 captures the substitutability across services provided by banks within a county. We

assume η > θ, meaning that deposits at different banks within the same county are more
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substitutable than those across counties.9 The variable ϕi denotes the household’s relative

preference for deposits in county i and captures factors that may affect county-level demand

for deposits (including, for instance, income, wealth, or economic conditions). Our empirical

strategy, described in Section 4, recovers these preference shifters from the data. Analogously,

ψij is the relative preference for bank j within a given county.10

The household derives utility from consumption and the economy-wide deposit composite

according to a function u(C,D), increasing in both arguments. It solves

max
C,{Dij}

u(C,D) (2)

s.t. C =

(
W − E −

∫ 1

0

Ji∑
j=1

Dijdi

)
R +

∫ 1

0

Ji∑
j=1

RD
ijDijdi+Π,

where RD
ij is the interest rate offered by bank j that operates in market i, R is an exogenous

rate of return on (illiquid) investments, and Π are aggregate bank profits. All non-deposit

assets (i.e., wholesale funding and interbank lending) earn a return R, so the net wealth of the

household is simply W − E −
∫ 1

0

∑Ji
j=1Dijdi.

Optimization yields the following demand function for deposits of bank j in county i

R−RD
ij

R−RD
i

= ψij

(
Dij

Di

)− 1
η

, (3)

In what follows, we let Dij

(
RD
ij

)
to capture the demand function defined by Equation (3). The

bank-level spreads R−RD
ij and the county-level spread index R−RD

i are linked through:

R−RD
i =

(
Ji∑
j=1

ψηij
(
R−RD

ij

)1−η) 1
1−η

. (4)

Analogously, demand for the county-level deposit composite Di is

R−RD
i

R−RD
= ϕi

(
Di

D

)− 1
θ

, (5)

where R−RD =

(∫ 1

0

ϕθi
(
R−RD

i

)1−θ
di

) 1
1−θ

.

9This is similar to assumptions commonly made in the literature on oligopolistic competition in macroeconomics
and trade (see, e.g., Atkeson and Burstein, 2008).
10These preferences can be micro-founded in a discrete choice problem over bank deposits if the non-monetary
value of each bank deposit is drawn from a correlated Gumbel in which θ and η govern the similarity of draws
across and within markets, respectively (Verboven, 1996; Berger et al., 2022). For details, see Appendix C.1.
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3.2. Banks

There is a large number of heterogeneous banks, indexed by j. Each bank j uses funds raised

from deposits and other sources of financing (wholesale funding, interbank loans, equity) to

make loans Lj or to invest in securities Sj. We let bank j operate in a subset of locations

(counties) Mj from where it is able to raise deposits. We use the indicator function Λj(i)

to denote whether bank j operates in county i, i.e. Λj(i) = 1 if i ∈ Mj and 0 otherwise.

Throughout the paper, we do not explicitly model the choice of Mj: instead, we treat banks’

location decisions as given (and directly observed from the data) and quantify their implications

for risk premia, markups, and spreads.

Banks compete for deposits by setting interest rates RD
ij . They act as oligopolists at the

county-level—i.e. they internalize their effects on RD
i and Di—but take as given the aggregates

RD and D. Bank j’s overall cost of a unit of deposits from county i is RD
ij + κij, where the

parameter κij captures non-interest costs. We analyze separately two polar cases for banks’ rate

setting behavior. In the first, banks set deposit rates separately for each county (‘local pricing’).

The second is a stark form of ‘uniform pricing’: each bank sets a single deposit rate across all

the counties, i.e. we impose RD
ij = RD

j ∀i ∈ Mj. This second formulation is motivated by an

empirical literature documenting that banks often set identical rates across multiple markets

(Radecki, 1998; Heitfield and Prager, 2004; Granja and Paixao, 2021; Begenau and Stafford,

2022). Of course, reality lies somewhere in between these two extremes. For instance, a bank

may set the same rate across all branches of a given state, but different rates across states.11

Given our focus on deposit risks, we start with a flexible, general approach to returns on

deposits. Let Πj

(
{Dij}i∈Mj

)
denote the realized profit from a vector of deposit flows, taking

into account the optimal choices and returns/costs of lending and other sources of financing

(e.g. wholesale funding and interbank borrowing).12 This general formulation of returns allows

us to connect to a large literature analyzing, both theoretically and empirically, rich models

of lending and wholesale borrowing. Our goal is to derive a general expression for deposit

rates—the key object of interest—as a function of Πj(·) and the demand side.

Of course, characterizing the exact form of Πj (·) requires additional assumptions on its key

determinants, specifically: (i) returns on lending and other assets; (ii) other sources of funding,

such as wholesale funding and interbank loans; (iii) the timing of banks’ choices. For instance,

11As we will see, data are consistent with this intermediate view—there is some market-specific variation in
rates even though a bank-specific component accounts for a very large fraction of the overall variation.
12These returns and costs may be stochastic and heterogeneous across locations or banks. At this stage, we
impose no specific assumptions on them, nor on the lending technology.
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as we explain next for our baseline specification, we assume that banks choose deposit rates

and loans before observing the realized shocks.

Before imposing additional structure, we first characterize the bank’s problem of choosing

deposit rates for a general profit function Πj. For brevity, we focus on the local pricing case.

The deposit rates offered by bank j in each market it operates in are the solution to:

max
{RD

ij}i∈Mj

E
[
Πj

({
Dij

(
RD
ij

)}
∀i∈Mj

)
−
∫ 1

0

(
RD
ij + κij

)
Dij

(
RD
ij

)
dΛj (k)

]
, (6)

where Λj(·) denotes the measure indexing counties in which bank j operates.

It is instructive to express the optimal choice in terms of deposit spreads (relative to R, the

return on the illiquid asset). These are given by (see Appendix C for derivations):

R−RD
ij =

ϑij
ϑij + 1

[
κij +R− E

(
Π′
ij

)
−

Cov
(
Π′
ij,D′

ij

)
E
(
D′
ij

) ]
(7)

Equation (7) decomposes deposit spreads into a markup and marginal cost component. The

markup is given by
ϑij
ϑij+1

, where ϑij ≡
(
R−RD

ij

) E(D′
ij)

E(Dij)
denotes the expected price (i.e., spread)

elasticity of deposit demand and D′
ij ≡

∂Dij

∂(R−RD
ij)

is the slope of deposit demand. The marginal

cost component comprises the non-interest costs of raising deposits κij and the gap between

R and the expected marginal profit of an additional unit of deposits E
(
Π′
ij

)
, with Π′

ij ≡
∂Πj

∂Dij
.

More importantly for our analysis, the marginal cost also depends on how the marginal benefit

covaries with the slope of deposit demand. Intuitively, if the benefit of an additional unit of

deposits tends to be high when the slope of the demand is also relatively high (in magnitude),

that location is a more attractive source of deposit funding since it generates funds precisely

when their marginal value is larger. Consequently, the bank finds it optimal to offer a higher

deposit rate in that market—or, equivalently, a smaller spread R−RD
ij .

In sum, Equation (7) delivers a general insight: under uncertainty, deposit rates rise with the

covariance of the slope of deposit demand with marginal benefit. In what follows, we impose

additional structure that will allow us to express (7) in terms of observables and take it to data.

Baseline Specification

We start by using the CES demand system to derive a closed-form expression for markups:

MKPij ≡
η(1− sij) + θsij

η(1− sij) + θsij − 1
, where (8)

sij ≡
R−RD

ij

R−RD
i

Dij

Di

= ψij

(
Dij

Di

) η−1
η

∈ (0, 1)
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denotes the bank’s effective share in liquidity-related expenditure in county i. The form of

the markup is identical to that of Atkeson and Burstein (2008) and reflects the fact that the

effective elasticity of deposit demand is a weighted average of the within-county and across-

county elasticity parameters (η and θ, respectively). Given the assumption that η > θ > 1, this

implies that markups are increasing in sij, the bank’s market share sij.
13

We then specify the determinants of the profit function, Πj (·). First, on the assets side, we

assume that bank j is endowed with a linear lending technology, with returns R+ zj, where zj

denotes a stochastic (bank-specific) spread. One interpretation is that each bank has access to

a large (potentially economy-wide) market for assets. This simple specification still allows for

heterogeneity in skill or information acquisition across banks through a bank-specific spread zj.

The linear returns assumption implies the distinction between loans and other assets (such as

securities) is not relevant, so we economize on notation and refer to all assets as loans. Later, in

Section 7, we will analyze a richer asset structure where banks make explicit choices of securities

and lending across local markets.

Second, banks have three other sources of funding, in addition to deposits. Wholesale fund-

ing Hj is available through a competitive economy-wide market. The supply of funds (from

households) in this market is assumed to be perfectly elastic at R, which fixes the interest rate

on Hj. Bank j is subject to issuance costs of
νj
2
H2
j , so the marginal cost for bank j of raising

an additional unit of funding from this market is given by R +
νj
H j

. Bank j is also assumed

to receive Ej units of equity funding. We treat Ej as exogenous, an innocuous choice given

the absence of financial or agency frictions.14 Lastly, there is a competitive interbank lending

market that opens after all the shocks have been realized. Interbank borrowing Bj is subject

to costs, given by
χj

2
B2
j .

15 For simplicity, we will assume that the household also participates

in this market with a supply curve that is perfectly elastic at R.16 This implies that from bank

j’s perspective, the cost (return) of borrowing (lending) in this market is R +
χj

2
Bj.

Third, we make explicit the timing of various decisions. Banks first choose deposit rates {RD
ij}

(or equivalently, deposit spreads {R−RD
ij}), wholesale funding Hj, and loans Lj. Importantly,

the county-level deposit demand shifters {ϕi} and the loan returns zj are unknown at the time

13For sij > 0, the bank internalizes the effects of its choices on county-level aggregates, which changes the
effective demand elasticity. As sij → 0, the markup becomes η

η−1 , the monopolistic competition limit.
14It is straightforward to endogenize equity subject to issuance costs. This will have no effect on our results.
15This assumption, convex costs in non-deposit funding, is common in the literature (see Bernanke and Gertler,
1995; Kashyap and Stein, 1995; D’Amico and Alekseev, 2024) and is meant to capture market frictions, such as
credit risk and/or agency/information frictions.
16This could be interpreted as capturing non-bank intermediaries, which have become increasingly important
participants in the interbank Fed Funds market.
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banks make these choices (but their joint distribution is known). Then, the shocks are realized,

and the household chooses {Dij}. Banks cannot adjust their loans once shocks have been

realized. Given the realized {ϕi} shocks, the total funds available to bank j (from deposits,

wholesale funding and equity) may differ from its loan commitments Lj. In this case, the bank

has to borrow or lend in the interbank market, Bj = Lj − Ej −Hj −
∫ 1

0
DijdΛj (i).

Given these assumptions, we can write the profit function as follows:

Πj

(
{Dij}i∈Mj

)
= (R + zj)L

∗
j − (R +

νj
2
H∗
j )H

∗
j − (R +

χj
2
Bj)Bj, (9)

where Bj = L∗
j −H∗

j − Ej −
∫ 1

0

DijdΛj (i) ,

and L∗
j andH

∗
j denote the optimal (ex-ante) choices of loan commitments and wholesale funding.

In this baseline specification, the combination of loan commitments and costs of interbank

borrowing (i.e., a χj > 0) create curvature in Πj

(
{Dij}i∈Mj

)
, the source of aversion to deposit

risk.17 Given (L∗
j , H

∗
j ), and deposit rates, more volatile {ϕi} shocks increase the probability

that the bank will have to tap the costly interbank market. Equation (9) directly implies:

Π′
ij = R + χj

(
L∗
j −H∗

j − Ej −
∫ 1

0

DijdΛj (i)

)
.

We now analyze the bank’s problem separately under local and uniform pricing.

Local Pricing

In the case where banks set a different deposit rate for each location in which they operate,

their problem can be stated as follows:

max
{RD

ij}∀i∈Mj
,Lj ,Hj

E
{
(R + zj)Lj −

(
R +

νj
2
Hj

)
Hj −

(
R +

χj
2
Bj

)
Bj −

∫ 1

0

(
RD
ij + κij

)
DijdΛj(i)

}

s.t. Lj =

∫ 1

0

Dij dΛj(i) +Hj + Ej +Bj, (10)

Optimal deposit spreads (see Appendix C for the derivation) are given by:

R−RD
ij =

η(1− sij) + θsij
η(1− sij) + θsij − 1

[
κij − E (zj) + χjE (Dj) Γij

]
, (11)

17In Section 8, we show that our results are robust to alternative sources of curvature, such as diminishing
marginal returns on lending, risk aversion, or regulatory constraints. Other mechanism that would also generate
curvature in a bank’s profit function is costly equity issuance and capital requirements, as in Bolton et al. (2020).
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where E (Dj) ≡
∫
i∈Mj

E (Dij) di denotes total expected deposits and

Γij ≡
∫
k∈Mj

ωkj
ρikσiσk
µiµk

dk. (12)

denotes the county-specific risk for bank j, with µi ≡ E[ϕθi ], σi ≡ V1/2(ϕθi ), and ρik ≡
corr(ϕθi , ϕ

θ
k). The risk is the average covariance of county i’s deposit demand shock with the

counties bank j operates in, weighted by each county’s expected share in the bank’s expo-

sure total deposits, ωkj ≡ E(Dkj)Λj(k)∫
k∈Mj

E(Dkj)dk
. In what follows, we define deposit risk premium as

RPij ≡ χjE(Dj)Γij, the product of the quantity of risk (E(Dj)Γij) and the price of risk (χj).

Equation (12) shows how idiosyncratic risk affects marginal costs and through that, deposit

spreads. The spread offered by bank j in county i depends on the correlation {ρik} of that

county’s deposit shocks with those of the other counties j operates in. The higher this cor-

relation, ceteris paribus, the higher is the risk premium and the spread (or equivalently, the

lower is the deposit rate RD
ij ). Intuitively, it is optimal to charge higher deposit spreads in a

county where deposit demand tends to be high when overall deposit demand from the bank’s

perspective is high. This expression also highlights how geographical expansion affects spreads.

To the extent that a bank raises deposits from imperfectly correlated locations (ρik < 1), it has

lower risk exposures and therefore, a lower effective marginal cost.

Uniform Pricing

We next turn to the analysis of banks’ problem under uniform pricing: now, bank j is assumed

to set a single rate across all markets in which it operates, i.e. RD
ij = RD

j ∀i ∈ Mj. Given our

set of baseline assumptions, the problem for bank j is as follows:

max
RD

j ,Lj ,Hj

E
{
(R + zj)Lj −

(
R +

νj
2
Hj

)
Hj −

(
R +

χj
2
Bj

)
Bj −

∫ 1

0

(
RD
j + κij

)
Dij dΛj(i)

}
s.t. Lj =

∫ 1

0

DijdΛj(i) +Hj + Ej +Bj. (13)

Equation (14) characterizes the optimal bank deposit spread under uniform pricing (detailed

derivations are relegated to Appendix C):

R−RD
j =

η(1− sj) + θsj
η(1− sj) + θsj − 1

[
κj − E (zj) + χjE(Dj)Γj

]
, (14)
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where sj ≡
∑
ωijsij and κj ≡

∑
ωijκij represent bank-level weighted average market shares

and operating costs, respectively. The bank-level risk Γj is defined as:

Γj =

∫
k∈Mj

ω̃kj

(∫
i∈Mj

ωij
ρi,kσiσk
µiµk

di

)
dk, (15)

where ω̃Dij is a weighted elasticity of substitution, given by:

ω̃ij ≡
E (DijΛj(i))× (η(1− sij) + θsij)∫
i∈Mj

E (Dij)× (η(1− sij) + θsij) di
.

Equation (14) is similar in structure to (11), which characterized the optimal spread under

local pricing. The key difference is that the relevant objects—market shares and risk —are

now averaged with appropriate weights across all markets in which the bank operates. Under

local pricing, markups vary by county and increase with the county-level market share sij.

In contrast, under uniform pricing, markups are determined by a weighted average of market

shares in all the markets the bank operates in, sj. Similarly, the risk premium under uniform

pricing, RPj ≡ χjE(Dj)Γj, depends on the average covariance—or equivalently, on the volatility

of the bank’s total deposits—while under local pricing, it varies by county and is a function of

that county’s covariance with others in the bank’s portfolio.

3.3. Lending

The analysis so far has focused on deposit markets. Changes in deposit spreads—such as

those driven by reductions in deposit volatility—also have implications for lending. While we

take the demand for loans as given and treat loan returns, {zj}, as exogenous processes, changes
in deposit spreads affect overall lending through shifts in the credit supply.

From the bank’s first-order conditions with respect to loans and wholesale funding:

L⋆j =
E (zj)

χj
+

∫
i∈Mj

E (Dij) +Hj + Ej, and H⋆
j =

E (zj)

νj
. (16)

Given our CES specification for deposit demand, the change in bank-county level deposits in

response to a change in spreads is D′
ij =

(η−θ)sij−η
R−RD

ij
Dij. Using a first-order approximation, we

can show that changes in bank-level lending induced by deposit risk (under uniform pricing)

are given by:18

∂ lnL⋆j
∂ ln Γj

≈ ((η − θ) sj − η)
E (Dj)

L⋆j

χjE(Dj)Γj
MCj

< 0 (17)

18The expressions under local pricing or for changes induces by variation in markups are analogous.
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Thus, lower risk leads to higher lending, particularly for banks (i) with large risk premia (as a

share of total marginal costs), (ii) that rely more heavily on deposits for funding, and/or (iii)

with smaller market shares (and so face more elastic deposit demand). We examine the effects

of changes in deposit markups and risk premia on lending more thoroughly in Section 7, using

an extended version of the model with multiple assets (including ‘local’ loans and securities).

4. Mapping the Model to the Data

In this section, we describe the data and our calibration procedure. The model, despite its

richness, lends itself to a transparent calibration strategy using micro-level data.

4.1. Data Sources

Annual data on deposits at the branch-level is taken from the FDIC’s Summary of Deposits

(SOD) for the period 1990-2019. This is an annual survey of branch office deposits as of June 30

for all FDIC-insured institutions and covers all US states, encompassing over 86,000 branches

as of 2019. The dataset contains a unique identifier for a branch (UNINUMBR) and a bank

(IDRSSD). We use data from Call Reports for bank-level variables such as loans, deposits, total

assets, and liabilities.

We use two sources for deposit rates. The first one is Call Reports, which contain detailed

bank-level data for the universe of banks at quarterly frequency since 1990. Because Call

Reports do not provide pricing data, we compute bank-level deposit rates as the ratio between

a bank’s interest expenses on savings and time deposits and its corresponding deposits.

The second source is RateWatch. The vendor provides branch-level deposit rates gathered

through surveys across different types of deposits, including savings accounts and time deposits.

The data are at a weekly frequency and cover the 2011-2019 period.19 The survey is quite

comprehensive, with responding branches covering around 80% of total domestic deposits. Since

RateWatch provides rates at the product level, we compute weighted average deposit rates

across deposit products (certificates of deposit and savings accounts) using as weights bank-

level balances for each deposit type from Call Reports.20 Lastly, based on our view of a county

19The survey has data for before 2011 but with a significantly lower coverage of deposits.
20Deposit products considered from RateWatch are 12-, 24-, and 60-month CDs (12MCD10K, 24MCD10K, and
60MCD10K), as well as money markets (MM25K). Bank-level weights for time deposits are deposit balances
with less than 1 year of remaining maturity, 1-3 years, and more than 3 years, respectively. Rates on money
markets are weighted using savings account balances.
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as the relevant market, we collapse the RateWatch interest rate data to the year-county-bank

level using branch-level deposits as weights.21

We use the 5-Year High Quality Market (HQM) Corporate Bond Spot Rate as our measure

of the market rate R.22 We then compute interest rate spreads, R − RD
ij and R − RD

j , as the

difference between the market and deposit rates.

The data from Call Reports and RateWatch map naturally to our two pricing specifications.

For our baseline analysis, we adopt the uniform pricing specification and use deposit rates from

Call Reports. This dataset has better coverage, both across banks (the Call Reports cover the

universe of US domestic banks) and over time (the data are available at least since 1990, while

the RateWatch data starts only in 2011). The latter feature allows us to make comparisons

before and after the Riegle-Neal Act of 1994 and to use a longer sample to compute the variance-

covariance matrix for the county-level ϕi shocks.

In line with previous studies, we find evidence consistent with uniform pricing by banks. In

particular, a bank-year fixed effect accounts for more than 90% of the observed variation in

deposit spreads at the bank-county-year level.23 The residual variation, while small, suggests

some degree of local pricing behavior. Later in this section, we will exploit this variation to

estimate the within-county demand elasticity, η.

Table 2 shows some descriptive statistics for deposits (SOD) and spreads (Call Reports) in

2019. Our final dataset contains nearly 25,000 bank-county observations and just over 5,000

bank-level observations. The distribution of deposits has a very large dispersion (10-14 times

the mean) and is significantly right-tailed, both for bank-county and bank-level data. In turn,

the distribution of bank-level spreads has a milder yet significant dispersion (roughly 33% of

the mean), and a very mild left skewness.

4.2. Calibration

We describe next our calibration strategy, which proceeds in several steps. While our model

is static, we introduce a time subindex, t, to highlight the set of parameters that vary from

year to year, and to be more precise on the source of variation that we exploit to identify

21In Appendix D.4, we show that all our results are robust to an alternative definition of a local market at the
MSA level, instead of at the county level. Also, in Appendix D.5, we show that results are robust to excluding
data that could be linked to online banking or banks’ central booking practices.
22This rate is available at FRED, under the HQMCB5YR identifier.
23To ensure this pattern is not driven by banks operating in only a few locations, we restrict our analysis to
banks active in more than 100 counties. Of course, we cannot rule out the possibility that banks engage in local
pricing but find it optimal to set very similar rates across the markets in which they operate.
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Table 2. Descriptive Statistics on Deposits and Spreads

Deposits (in millions of USD) Spreads (in %)
Bank-county level Bank level Bank level

Mean 100.4 484.1 1.48
Median 14.8 28.1 1.50
10th percentile 2.7 6.6 0.80
90th percentile 115.7 249.8 2.11
Standard deviation 1080.6 6821.5 0.49
Skewness 47.2 33.5 -0.25
Observations 24579 5099 5099

Notes: This table shows descriptive statistics on deposits and spreads for 2019. Deposits are based on data
from Summary of Deposits. Spreads are based on data from Call Reports and FRED.

many of our parameters. Given the finite number of counties in the US, we replace integrals

with summations. We begin our analysis by estimating the elasticities of substitution within-

and across- counties (η and θ), which are assumed to be constant throughout our sample.

Using these elasticities, we then use our model equations to recover demand and cost related

parameters and shocks: {ϕit, ψijt, κijt,Ezjt}∀{i,j,t}. The county-level shifters ϕit are then used

to estimate their joint distribution and, in particular, the variance-covariance {ρik, σi, µi}∀i,
relevant to compute our measure of risk premia. Finally, we estimate the parameters indexing

the weight of deposit risk on spreads, {χj}—the curvature of the pricing equation.

Elasticities of Substitution

To estimate the within-county elasticity of substitution, η, we employ an instrumental vari-

able strategy. Our instrument is a weighted average of changes in relative wages of bank tellers

across all locations where a bank operates. Our identifying assumption is that changes in the

average wage rate impact a bank’s cost of providing deposit services, κijt, but do not influence

the relative preference parameters, ψijt, and demand for deposits. For each bank, we construct

a Bartik-type instrument by weighting county-level wage changes by the share of a bank’s total

deposits in that county in a base year t0 (set to 2011). Specifically, for bank j operating in

counties k ∈ Mj, the instrument is given by:

BartikIVjt ≡
∑
k∈Mj0

(
∆ lnWageTellerskt −∆ lnWageAll Occup

kt

)
× Dkj0

Dj0

,

where WageTellers denotes the Metropolitan Statistical Area (MSA)-level wages for bank tellers,

and WageAll Occup refers to the average wage across all occupations within an MSA.24 The

24Wage data are from the Bureau of Labor Statistics, where the finest level of disaggregation is the MSA.



Geographic Funding Risk and Market Power in Deposit Markets 21

assumption is that wages constitute a significant portion of the banks’ costs of providing deposit

services, κijt, so these wage changes affect banks’ marginal costs and deposit spreads.25

Equations (18) and (19) describe our two-stage regression. In the first stage, we regress

changes in bank-county-level deposit spreads on our Bartik instrument. In the second stage,

we regress changes in bank-county-level deposits on the instrumented changes in spreads. We

include county-bank fixed effects to account for time-invariant characteristics specific to each

bank-county pair, and county-time fixed effects to capture common variation within each county

over time. Our coefficient of interest is βD, which, based on our CES structure, can be directly

mapped into the within-county elasticity of substitution (i.e., η = −βD):

∆ ln(R−RD
ijt) = γRij + γRit + βRBartikIVjt + ϵRijt, (18)

∆ lnDijt = γDij + γDit + βD ̂∆ ln(R−RD
ijt) + ϵDijt. (19)

The results are shown in Panel (A) of Table 3. Based on our preferred specification in

columns (2) and (3)—which includes bank-county and county-time fixed effects—we obtain a

within-county elasticity of substitution close to 3. Column (1) shows the estimated elasticity

for a specification without county-time fixed effects. In this case, the point estimate is smaller,

which is consistent with the insight in Berger et al. (2022). That is, although the instrument is

uncorrelated with bank-specific demand shifters, it still influences equilibrium deposits through

its effects on county-level variables.26 The county-time fixed effect allows us to account for all

those interactions and indirect effects, thereby recovering the true structural elasticity η.

We follow a similar approach to estimate the cross-county elasticity of substitution, θ. To do

this, we aggregate our bank-level Bartik instrument at the county level, weighting by banks’

county-level market shares in the base year. More specifically, the instrument is defined as

BartikIVit =
∑

j∈i s̃ij0Bartik
IV
jt , where s̃ij0 represents county-level market shares in the base

year.27 Changes in BartikIVit affect county-level banks’ average marginal costs and thus deposit

spreads. The identifying assumption here is that the weighted county-level relative wage changes

of bank tellers are orthogonal to the demand-shifter shocks, ϕit. As before, working with relative

25We subtract the change in average wage across all occupations to remove a potential mechanical correlation
with deposit demand. For instance, if all wages rise, including those for tellers, higher household income could
drive up deposit demand, potentially increasing spreads.
26In addition to the correlation between wage growth and deposit demand, there could also be effects on the
county-level price index if the bank is large and directly influences the price index, or if other banks in the
county change their prices in response.
27We use a base year so that endogenous changes in sijt, which could be correlated with spreads and deposits,

do not mechanically affect our instrument. We define s̃ij0 ≡ Dij0∑
j∈i Dij0

.
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Table 3. Estimated Demand Elasticities

Panel A. Estimation of η

∆ lnDijt

(1) (2) (3)

∆̂ lnRijt
-2.03 -2.87 -3.16
(0.55) (1.14) (0.67)

Time FE Yes - -
Bank-county FE Yes Yes Yes
County-time FE No Yes Yes
County Type All All ≥ 5 banks
Observations 116,298 115,182 101,870
1st stage F-stat 36.43 13.48 13.48

Panel B. Estimation of θ

∆ lnDit

(1) (2)

∆̂ lnRit
-2.35 -1.79
(1.02) (0.70)

Time FE Yes Yes
County FE No Yes
County Type All ≥ 5 banks
Observations 17,773 10,204
1st stage F-stat 11.31 29.27

Notes: Panel A presents the estimates for the elasticity of substitution, η. Standard errors are clustered at the
county-year level. Panel B shows the estimates for θ. We linearly detrend our instrument at the bank level, and
we linearly detrend (log) deposits and (log) spreads at the bank-county level. In column (3), we condition on
counties with more than 5 banks in a given year (the first stage regression is the same as in column 2). Standard
errors are clustered at the county level and all variables are linearly detrended (in logs) at the county level.

wage changes mitigates concerns that the instrument could be correlated with deposit demand.

We argue that this assumption is reasonable, especially for counties where many large banks

operate, as their exposure to local conditions tends to be smaller.

Equations (20) and (21) describe our two-stage regression, analogous to the approach used

for estimating η. Under our CES demand system, the coefficient αD can be directly mapped

to the cross-county elasticity of substitution, θ:

∆ ln(R−RD
it ) = γRi + γRt + αRBartikIVit + ϵRit , (20)

∆ lnDit = γDi + γDt + αD ̂∆ ln(R−RD
it ) + ϵDit . (21)

The estimates for θ are shown in Panel B of Table 3. We obtain an estimate of approximately

2, which aligns with our modeling assumption that the elasticity of substitution across counties

is lower than within counties.

Recovering Shocks and Time-varying Parameters

Given the elasticities η and θ, the optimality conditions of the model can be used to recover the

yearly county-level shocks {ϕit}∀{i,t} and the relative demand shifters {ψijt}∀{i,j,t} parameters.

Combining the definition for Di in Equation (1) with bank-county level demand function (3)
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Table 4. Time-varying Parameters: Summary Statistics

Parameter Description Mean Cross Sectional SD Skewness
ψijt Relative preference for bank j 0.39 0.23 0.39

kijt − zjt (pp) Non-interest expenses 0.99 0.45 -8.69
kjt − zjt (pp) Non-interest expenses (UP) 0.73 0.65 -10.11

Notes: The table reports summary moments for the estimated parameters, based on 2019 data.

and the county-level ideal price index (4), we obtain the bank-county level demand shifters:

ψijt =
ψ̂ijt(∑
j ψ̂

η
ijt

) 1
η

, where (22)

ψ̂ijt =
(
R−RD

ijt

)
D

1
η

ijt

(∑
j

(
R−RD

ijt

)
D

1
η

ijt

)−1

. (23)

Equation (22) imposes a normalization (specifically,
∑

j∈i ψ
η
ijt = 1).28 Once we have the {ψijt},

we can use Equations (1), (4), and (8) to directly compute the county-level {Dit}∀{i,t} and{
R−RD

it

}
∀{i,t} as well as the market shares {sijt}∀{i,j,t}.

The next step is to recover the realized shocks {ϕit}∀{i,t}. Combining the definition for D in

Equation (1) with the economy-wide demand function and price index in Equation (5), we get

ϕit =
ϕ̂it(∑

j ϕ̂
θ
itΛi

) 1
θ

, where (24)

ϕ̂it =
(
R−RD

it

)
D

1
θ
it

(∑
i

(
R−RD

it

)
D

1
θ
itΛi

)−1

. (25)

As before, the first expression reflects a normalization (
∑

i ϕ
θ
itΛi = 1).29 Table 4 summarizes

the moments for {ψijt} and {ϕit}.
Given a panel of observed shocks {ϕit}, we can then directly estimate {ρik, σi, µi}∀{i,k}. Figure

4 depicts these estimates. Panel (A), which shows the distribution of the coefficient of variation,

σi/µi, indicates a non-trivial amount of risk. The histogram of pairwise correlations, ρik, in

Panel (B) suggests an important role for geographical diversification. Panel (C) presents the

histogram of the covariance terms, which are relevant for the risk premium component of

spreads—as shown in Equations (11) and (12).

28This normalization implies that, in the special case in which there is no dispersion in Rijt, the county-level
composite spread equals the bank-county level ones. That is, Rit = Rijt, where Rit is defined in Equation (4).
29We detrend {ϕ̂it}2019t=1990 at the county level to ensure that our estimates of the covariance matrix are not
distorted by county-level trends. Using an aggregate trend produces similar results.
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Figure 4. Estimated Moments for the {ϕit} Distribution

(a) σi/µi (b) ρik (c) ρikσiσk
µiµk

Notes: The figure depicts summary moments of the estimated {ϕi} shocks.

Curvature of the Pricing Equation

The last step of the calibration involves recovering the remaining parameters that characterize

marginal costs: {κij,Ezjt}∀{i,j,t} and {χj}∀{j}. In our formulation, χj indexes the degree of

frictions in the inter-bank lending market. We use the model’s optimal pricing equation and

observed deposit spreads to estimate χj. Since this strategy does not directly depend on the

specific micro-foundation for χj, it renders our estimates robust to alternative mechanisms that

lead to a risk premium of this form.30

In theory, one could estimate χj for each bank separately. However, data limitations force us

to impose some structure.31 We posit that χj is systematically related to bank size. Specifically,

as a baseline, we assume that χj is inversely proportional to expected total deposits. This

assumption reduces the exercise to estimating a single parameter χ ≡ χjE(Dj). It also implies

that any variation across banks in the effect of risk on spreads comes from the riskiness of

their portfolio (more precisely, the Γijt term) rather than curvature heterogeneity (later in this

section, we show the effect of moving to a more flexible specification). Under this assumption,

rearranging the optimal pricing equation (11), and allowing for a time subscript t, we obtain

the following regression specification:

MCijt = κijt − Ezjt + χΓijt, (26)

where MCijt ≡
R−RD

ijt

MKPijt
. Since the risk term Γijt is likely correlated with the cost shifters, one

cannot estimate χ through OLS. In order to identify χ, one would need to isolate the variation

in Γijt that is orthogonal to changes in κijt. To this end, we exploit variation in Γijt that is only

30E.g. diminishing returns in lending or risk aversion. See Appendix C.
31We have over 16,000 banks in our data, but only 9 years’ worth of data from RateWatch. Moreover, many
banks are active for only part of the sample period, further limiting our ability to estimate bank-specific χj .
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driven by changes in the demand shifters ψijt. These changes affect the county-level demand for

bank j and through that influence the county-level weights ωij that are used to construct the

risk premium measure, as shown in Equation (12). Our identifying assumption is that changes

in ψijt are orthogonal to fluctuations in the operating costs κijt.

Equations (27) and (28) describe our two-stage regression for the local pricing case.

∆Γijt = κΓij + κΓit + κΓjt + ζΓ∆ logψijt + ϵΓijt, (27)

∆ lnMCijt = κMC
ij + κMC

it + κMC
jt + ζMC ∆̂Γijt + ϵMC

ijt . (28)

In the first stage, we regress changes in bank-county-level deposit risk on our estimated ψijt. In

the second stage, we regress changes in bank-county-level marginal costs on the instrumented

changes in risk. Both regressions include a set of fixed effects (county-bank, county-time, and

bank-time), so the relevant variation is within a bank-county pair. The coefficient of interest is

ζMC , which can be directly mapped into χ.

Equations (27)-(28) are derived assuming local pricing. A potential concern is that they

focus on a narrow source of variation—within bank-county pairs—which may be limited when

banks engage in uniform pricing. To address this, we run a similar specification at the bank

level under uniform pricing. We first aggregate our bank-county level demand shifter to a bank

level instrument, by weighting changes in ψijt with the relative size of that county. Specifically,

the first-stage instrument is given by: ψjt =
∑

i∈Mj
ωij0 ψ

η
ijtE (Dit), where ωij0 denotes bank

j’s relative exposure to county i in the base year. Using this instrument, our 2SLS regression

follows from:32

∆Γjt = κΓj + κΓj t+ κΓt + ζΓ∆ logψjt + ϵΓjt, (29)

∆ lnMCjt = κMC
j + κMC

t + ζMC ∆̂Γjt + ϵMC
jt . (30)

Table 5 presents the estimates for ζMC (or equivalently, χ). The results are consistent across

both the local and uniform pricing specifications. Based on these estimates, we set χ = 0.03

for our model calibration. In Appendix Figure D.1, we explore a more flexible specification by

sorting banks into bins based on their total deposits and estimating χ separately within each

group. The resulting estimates are quite close to those in Table 5, and suggest that χ tends

to rise with bank size. This implies that our results (with χ = 0.03) likely represent a lower

bound for the overall impact of risk premia on spreads, particularly for larger banks.

32In the first stage, we include an interaction between the bank fixed effect, κRj , and the year, t, to account for
potential bank-level trends in the growth rate of the instrument.
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Table 5. Estimated Curvature, χ

Local Pricing: Uniform Pricing

(1) (2) (3) (4) (5)

∆̂Γijt 0.031 0.023 0.047 0.04 0.017
(0.0099) (0.0106) (0.0113) (0.0123) (0.0061)

Bank-year FE Yes Yes Yes Yes -
County-year FE Yes Yes Yes Yes -
Bank-county FE No Yes No Yes -
Bank and year FE - - - - Yes

County type All All ≥ 5 ≥ 5 -
Observations 102,454 102,301 91,175 90,992 32,000

Notes: The table displays the estimates for χ. For the local-pricing specification, standard errors are clustered
at the county-year level. For the uniform-pricing case, the table reports robust standard errors.

To conclude, given a value for χ, we use Equation (26) to back out the exogenous component

of marginal costs, namely {κijt − Ezjt}∀{i,j,t}. Table 4 shows summary statistics.

5. Contributions of Markups and Risk Premia to Deposit Spreads

In this section, we use the calibrated model to quantify the contributions of markups and

risk premia to deposit spreads.33 To this end, we use a first-order approximation of Equation

(14) around some value for marginal cost MC⋆:

ln
(
R−RD

jt

)
≈ lnMKPjt +

χ

MC∗Γjt +
1

MC∗ (κjt − Ezjt + χ) + (lnMC∗ − 1) , (31)

where lnMKPjt and χ
MC∗Γjt capture the markup and risk premium (RP) components of

spreads, respectively. We use an analogous decomposition under local pricing, based on Equa-

tion (11).

5.1. Cross-sectional Patterns

We start by analyzing cross-sectional patterns in the effects of markups and risk premia on

spreads for 2019, the last year in our sample. Figure 5 shows the distributions of χ
MC∗Γjt and

lnMKPjt, i.e., the contributions of risk premia (left panels) and markups (right panels) to

(log) spreads (in percentage points). The top panel depicts the bank-level distribution for the

uniform pricing case, while the bottom panel shows the bank-county-level distribution under

local pricing. Both display considerable heterogeneity, whether across banks or bank-county

33Throughout the paper, we define the boundaries of the deposit market at the county level. In Appendix D,
we show that our results are robust to alternative market definitions, e.g. if the boundaries are at the MSA
level.
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Figure 5. Contributions to (log) Spreads

(a) Uniform Pricing (bank level)
Risk Premia Markups

(b) Local Pricing (bank-county level)
Risk Premia Markups

Notes: The figure presents histograms of the components of deposit spreads—risk premia and markups—based
on the decomposition in Equation (31) for 2019. The top panel shows the results under the uniform-pricing
scenario, while the bottom panel displays the outcomes under local pricing. Units are log points ×100.

pairs. For the median bank, the risk premium accounts for about 25% of its marginal costs

and markups for over 40%. At the ij-level, the effects of risk premia are relatively smaller, on

average accounting for less than 10% of a bank’s marginal costs. This is because banks with

low risk premia are typically large banks that operate in many locations and, thus, shift the

bank-county risk distribution to the left. Still, the ij-level distribution exhibits a long right tail,

indicating that risk can account for a sizable share of banks’ marginal costs in some markets.

Next, we explore how the effects of risk premia and markups covary with county and bank

characteristics. The county-level effects are computed as weighted averages of the bank-county

level, using the model-implied market shares sij as weights. For example, under uniform pric-

ing, the contribution of risk premia and markups to county-level spreads are, respectively,
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Figure 6. Contributions to (log) Spreads, by County

(a) Risk Premia (b) Markups

Notes: The figure displays the markup and risk premia components of deposit spreads by county income, based
on the decomposition in Equation (31). Blue dots represent results under uniform pricing, while red squares
correspond to the local-pricing case. Larger (darker) markers denote average values within each decile of the
county income distribution. Units are log points ×100.∑

j∈Ji
sijt

χ
MC∗

i
Γjt, and

∑
j∈Ji

sijt lnMKPjt, where Ji denotes the set of banks operating in i.34

The definitions are analogous under local pricing.

Panel (A) of Figure 6 shows the contribution of risk premia by county income. Blue dots

show the results under uniform pricing, and red squares represent the local-pricing case. Larger

dots indicate average values for each county income decile. Under both scenarios, we find that

the effects of risk on spreads are substantially higher in smaller counties, reflecting the fact that

these markets are served by relatively undiversified banks. The magnitudes are economically

significant—for the bottom decile, the average effect of risk is about 0.40 log points. Panel

(B) depicts the effects of markups, which also decline with county size. Markups are typically

higher under local pricing (except for the largest two deciles). Combined, the risk and markup

forces drive up spreads by around 0.90 log points in the smallest/poorest counties.

We now turn to bank-level patterns. Under uniform pricing, we can directly use the de-

composition in Equation (31), since it is at the bank level. For the local-pricing case, we first

aggregate the bank-county-level variables using banks’ deposit shares, i.e.,
∑

i∈Mj
ωDijt

χΓijt

MC∗
jt
and∑

i∈Mj
ωDijt lnMKPijt, respectively, and then apply the decomposition in Equation (31).35

Panel (A) of Figure 7 shows that risk premia have a greater impact on spreads offered by

smaller banks, which typically operate in fewer markets. The effect is substantial: for banks

in the bottom decile, risk premia increase spreads by about 0.50 log points. Since larger banks

34For this exercise, we approximate marginal costs around the county average, i.e., MC∗
i =

∑
j∈Ji

sijMCj .
35In this case, we approximate marginal costs around the bank-level average, MC∗

j =
∑

i∈Mj
ωD
ijMCj .
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Figure 7. Contributions to (log) Spreads, by Bank

(a) Risk Premia (b) Markups

Notes: The figure shows the decomposition of deposit spreads into markups and risk premia by bank size,
proxied by total loans, using Equation (31). Blue dots represent results under uniform pricing, while red
squares correspond to local pricing. Units are log points ×100.

operate in many markets, their risk premium is small (close to zero for the top national banks).

Panel (B) shows the pattern for markups. Larger banks tend to have, on average, a higher

market share and thus larger markups, though the differences are quite small.

5.2. Changes Across Time

Next, we use the model to decompose changes in banks’ deposit spreads over time. Our goal

is to quantify the effects of changes in banks’ geographical presence on county-level markups,

marginal costs, and risk premia. To this end, we compute changes in these components between

1993, the pre Riegle-Neal Act period (t = 0), and 2019 (t = 1). For brevity, we only show

results under uniform pricing. In Appendix D, we show that the patterns are similar under

local pricing.36

Analogous to the cross-sectional analysis in the previous section, we use a first-order approx-

imation of the change in county-level spreads:

∆ ln(R−RD
it ) ≈ ∆

∑
j∈Jit

sijt lnMKPjt+
χ

MC∗
i

∆
∑
j∈Jit

sijtΓjt+
1

MC∗
i

∆
∑
j∈Jit

sijt(κjt−Ezjt), (32)

36Since the RateWatch data starts only in 2011, we do not have bank-county-level deposit rates for 1993.
Therefore, we use bank-level rates from the Call Reports for the pre-period and bank-county-level rates from
RateWatch for the post-period. We view this as a reasonable approximation, since most banks were in fact
‘local’ banks in the early 1990s (as shown in Figures 1 and 2).
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Figure 8. Changes in (log) Spreads, 1993-2019, by County

(a) Markups and Risk Premia (b) Diversification

Notes: Using the decomposition in Equation (32), Panel (A) shows the change in the markup and risk premia
components of deposit spreads between 1993 and 2019, by deciles of county income, under the uniform-pricing
case. Blue dots represent model-implied changes in risk premia, while red dots capture changes in markups.
Panel (B) further breaks down the change in risk premia into contributions from diversification gains, based on
Equation (33). Units are log points ×100.

where the operator ∆ defines changes across periods t = 1 and t = 0. The first two terms in the

right hand side, ∆
∑

j∈Jit
sijt lnMKPjt and

χ
MC∗

i
∆
∑

j∈Jit
sijtΓjt, capture county-level changes

in deposits spreads driven by changes in markups and risk premia, respectively.37

Panel (A) of Figure 8 depicts the changes in markups and risk premia, by county size. The

reduction in spreads from lower risk premia is much larger in smaller (poorer) counties and

implies a reduction of deposit spreads by over 15%. For larger counties, on the other hand,

the effects of risk premia on marginal costs are smaller (since they are served largely by that

were already well-diversified). Perhaps surprisingly, we find that markups actually decreased

for smaller counties and implied a 5% reduction (on average) in deposit spreads.

Figure 9 shows a county-level map of the U.S. with a decomposition of changes in spreads.

The largest risk-related reductions were observed in Wyoming, South Dakota, West Virginia,

Oklahoma, and Nebraska (Panel A). For larger/richer locations (such as California or the

Northeast), reductions in risk premia were modest, in part because those locations were served

by diversified banks even before the Riegle-Neal Act. The changes in markups, shown in Panel

(B), are milder: markups rose slightly in the Northeast (particularly in Connecticut, New York,

and New Jersey) and in Nevada but generally declined, particularly in the Midwest and South

regions.

37To compare changes across time, we approximate marginal costs around the time-0 county average, i.eMC∗
i =∑

j∈Ji0
sij0MCj0.
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Figure 9. Changes in (log) Spreads, 1993-2019

(a) Risk premia (b) Markups

Notes: Based on the decomposition in Equation (32), the maps illustrate county-level changes in the risk
premium and markup components of deposit spreads between 1993 and 2019 under the uniform-pricing case.
Darker blue shades represent larger declines in spreads due to reductions in risk premia, while darker red shades
indicate greater increases in spreads driven by rising markups. Units are log points ×100.

We can further decompose the changes in risk premia into variation in the extent of diversifi-

cation and other movements in deposit risk (for instance, the composition of a bank’s deposits

shifting toward less volatile counties). For each bank j and date t, we define the following

measure of diversification:

Diverjt ≡ Γjt − Γjt |ρ=1= Γjt −
∫
k∈Mjt

ω̃kjt

(∫
i∈Mj

ωijt
σiσk
µiµk

, di

)
dk, (33)

where Γjt |ρ=1 is our (bank-level) measure of deposit risk under the assumption that all counties

are perfectly correlated (but the other moments and weights remain the same). We then use

Equation (32) to aggregate this measure to the county level using the bank market shares sijt

as weights, so the effect of changes in diversification on (log) spreads in county i is given by
χ

MC∗
i
∆
∑

Jit
sijtDiverjt. On average, we find that changes in diversification account for almost

half of the drop in risk premia—Panel (B) of Figure 8.

Next, we explore the role of the extensive margin in the observed time variation in risk

premia. We do this by allocating county-level changes across surviving incumbents, entrants,

and exiting banks. We define a survivor as a bank that operated in county i in both periods

(1993 and 2019). An entrant (exiter) is a bank that operated in county i only in 2019 (1993).

Let Ĵi be the set of survivors, J̃i0 the set of exiters, and J̃i1 the set of entrants. For each period

t ∈ 0, 1, let Mit ≡
∑

j∈J̃it sijt denote the combined market share of banks in county i that

operate only in period t. Using these definitions, we can decompose county-level changes in
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risk premia as follows:

∆
∑
j∈Jit

sijtΓjt =Mi1

( ∑
j∈{J̃i1}

sij1
Mi1

Γj1 −
∑

j∈{Ĵi}

sij1
1−Mi1

Γj1

)
︸ ︷︷ ︸

Entrants vs. Survivors

+Mi0

( ∑
j∈{Ĵi}

sij0
1−Mi0

Γj0 −
∑

j∈{J̃i0}

sij0
Mi0

Γj0

)
︸ ︷︷ ︸

Survivors vs. Exiters

+
∑

j∈{Ĵi}

( sij1
1−Mi1

Γj1 −
sij0

1−Mi0
Γj0

)
︸ ︷︷ ︸

Within Survivors

. (34)

The first term on the right-hand side captures changes in county-level risk driven by new

entrants. It compares the average risk of banks that entered county i in period t = 1 to that

of the average survivor.38 We multiply this difference by the market share of entrants, Mi1,

to arrive at a measure of their contribution to changes in the county-level risk premium. The

second term repeats this procedure for exiters relative to survivors. We define the sum of these

two terms as the extensive margin. The last term on the right-hand side captures changes in

risk across surviving incumbents.

We then use Equation (32) to map the extensive-margin and surviving-incumbents compo-

nents into changes in county-level spreads. Panel A of Figure 10 shows these results by county

size. Over half of the decline in risk premia came through changes in the extensive margin,

particularly for smaller counties. Given its relative magnitude, we further decompose the exten-

sive margin into within-state and out-of-state entrants and exiters. An out-of-state entrant is a

bank that operated in county i only in 2019 (but not in 1993) and, in 1993, was not operating

in the state to which county i belongs.39 We find that more than half of the extensive-margin

change can be attributed to out-of-state entrants and exiters (Panel B), consistent with the

relaxation of geographic restrictions under the Riegle-Neal Act.

Aggregate Changes

Using a decomposition similar to Equation (32), we can decompose aggregate changes in

deposit spreads as follows:

∆ ln(R−RD
t ) ≈ ∆

∫
i

sit

{∑
j∈Jit

sijt lnMKPjt +
∑
j∈Jit

sijt
χΓjt
MC∗

i

+
∑
j∈Jit

sijt
κjt − Ezjt
MC∗

i

}
di , (35)

38Note that
∑

J̃i1

sij1
Mi1

=
∑

Ĵi

sij1
1−Mi1

= 1.
39The definition for an out-of-state exiter is analogous. Within-state entrants and exiters are banks that only
operated in county i during 2019 (1993), but in 1993 (2019), the bank was operating in the state to which
county i belongs. See Appendix C.4 for further details on this decomposition.
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Figure 10. Changes in (log) Spreads, 1993-2019: Role of the Extensive Margin

(a) New entrants vs incumbents (b) Out-of-state Banks

Notes: Following the decomposition in Equation (34), Panel (A) shows changes in risk premia driven by the
extensive margin (entrant and exiter banks) and by surviving incumbents. Panel (B) further decomposes the
extensive margin to highlight the role of out-of-state entrants and exiters. Units are log points ×100.

where sit denotes the county-level market shares. This decomposition captures not only county-

level variation in markups and risk premia but also compositional shifts. For instance, risk

premia may fall because due to the relative growth of counties with with low risk premia in

the pre-period. To isolate those effects, we consider an alternative decomposition in which the

shares sit are held fixed at their pre Riegle-Neal Act values, si0.

Table 6 presents the aggregate effects on deposit spreads from changes in markups and risk

premia, for the uniform-pricing and local-pricing cases. Specifically, it shows the contribution

of each channel to changes in the national deposit spread (log points × 100) as well as for

three broad county groups (small, medium, and large). Appendix Table D.1 depicts these

contributions as shares of total change in spreads.

We find that changes in the industrial structure between 1993 and 2019 induced a modest

decrease in the aggregate deposit spread. Changes in risk premia pushed spreads down by

around 3 log points, while markup changes contributed to around a 1.5 log point increase. These

small effects are not surprising, since aggregate changes are mostly driven by large counties, for

which we find small changes in both risk premia and markups (Figure 8). For smaller counties,

however, changes in banks’ geographical presence had sizable effects on spreads: for the “small”

and “medium” groups, changes in risk premia and markups account for more than half of the

observed decrease in deposit spreads during the considered period. The magnitudes of these

changes are similar under uniform and local pricing.



Geographic Funding Risk and Market Power in Deposit Markets 34

Table 6. Changes Across Time: The Role of Markups and Risk Premia

Uniform pricing Local Pricing

Risk Premium Markup Net Risk Premium Markup Net
Total Diver Total Diver

National Level
Aggregate -2.1 -2.5 1.4 -0.6 -2.0 -2.2 1.7 -0.3

Aggregate (fixed si shares) -3.4 -2.7 0.7 -2.7 -3.5 -2.6 0.4 -3.1

By Group of Counties
Small Counties (<p10) -18.9 -5.1 -5.3 -24.1 -15.5 -6.9 -1.1 -16.5

Medium Counties -6.7 -3.5 -1.3 -8.0 -5.9 -3.9 -0.6 -6.5
Large Counties (>p90) -2.1 -2.5 0.8 -1.3 -2.4 -2.1 0.0 -2.4

Notes: The table decomposes the change in log aggregate spreads, ln(R − RD) × 100, from 1993 to 2019 into
markup and risk premium components, using (35). The row labeled ‘fixed si shares’ holds county weights
fixed at their 1993 levels. The ‘Diver’ column reports the portion of the risk premium change attributable to
diversification. The last three rows present results by county income groups: small (10th percentile), medium
(45th − 55th percentiles), and large (90th percentile).

6. Counterfactual Experiments

In this section, we use our model to analyze the effects of various changes —from the structure

of the banking industry to demographics—on markups, risk premia, and deposit spreads. We

use the year 2019 as the benchmark and focus on the uniform pricing case. We begin by

specifying a functional form for the household’s preferences over consumption and deposit

services. Specifically, we assume a quasi-linear function U(C,D) = C + ξ logD. Optimality

implies the following relationship between the aggregate deposit composite and spreads: R −
RD = UD

UC
= ξD−1. Plugging in 2019 values for R−RD andD yields an estimate for ξ. Appendix

C.8 describes our solution algorithm.

Our first exercise analyzes an increase in χ, the curvature in bank payoffs or equivalently,

in banks’ aversion to deposit risk. In our baseline model, such a change can be interpreted

as arising from higher frictions in the interbank lending market.40 Formally, we increase χ for

all banks by 25% For the median county in our sample, this adjustment raises the risk premia

component of deposit spreads from approximately 0.10 log points to 0.125 log points. Panel (A)

of Table 7 presents the relative changes in county-level deposit spreads across small, medium,

and large counties (classified according to their income). Although the shock affects banks in

all locations, the increase in spreads is most pronounced (almost 4%) in small counties; in larger

counties, the effects are more subdued. Overall, these results underscore the disproportionate

40As we show in Section 8, the upward adjustment in χ can alternatively be understood as an indication of
heightened bank risk aversion or more pronounced diminishing returns in lending.
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Table 7. Counterfactuals

∆ Deposit Spreads Risk Premia Markups

Small Medium Large Small Medium Large Small Medium Large

A. Higher curvature
Increase χj 3.74 1.90 0.78 3.21 1.51 0.60 -0.06 -0.02 0.02

B. M&A, acquired banks operate in only 1 county
Acquirer bank:
B.1 Top local bank 2.64 0.62 -0.16 -1.74 0.22 0.18 0.77 0.42 0.06
B.2 Top regional bank 4.52 1.28 0.15 -12.33 -1.46 -0.10 -1.41 -0.00 0.06
B.3 Top national bank 5.78 2.08 0.38 -12.43 -1.53 -0.13 -1.00 0.24 0.11

C. M&A, acquired banks operate in at most 2 counties
Acquirer bank:
C.1 Top local bank 5.89 2.21 -0.33 -4.73 0.70 0.39 2.12 0.97 0.17
C.2 Top regional bank 11.52 3.24 0.38 -26.97 -3.43 -0.17 -2.39 -0.03 0.16
C.3 Top national bank 14.49 4.85 0.78 -27.59 -3.78 -0.27 -1.79 0.37 0.23

D. Changes in demographics
D.1 Increase µi -9.22 -4.28 -0.05 -7.47 -2.90 0.04 0.00 -0.19 -0.06
D.2 Increase σi / µi 1.95 2.45 5.88 1.88 2.38 4.75 0.03 0.06 0.13

Notes: The table reports log changes in deposit spreads, risk premia, and markups relative to the 2019 baseline,
in log points ×100. Columns display average changes for three groups of counties—small, medium, and large—
classified by total income. Panel A shows the effect of increasing the curvature parameter χ in banks’ profit
functions. Panels B and C report outcomes under different merger and acquisition scenarios (see main text for
details). Panel D examines the impact of demographic shifts. All results correspond to the uniform-pricing
specification.

impact that elevated frictions in the national interbank lending market can have on regions

where the bank deposit base is less diversified.

Our second counterfactual examines the impact of further consolidation in the banking sector.

In particular, we consider the acquisition of relatively undiversified banks by larger institutions,

a continuation of the M&A patterns seen over recent decades. We consider separately two sets

of target banks—those that operate in a single county and those that operate in at most two

counties.41 We consider three types of acquirers: the largest local bank operating in the same

county as the target, the largest regional bank operating in the same state, and the largest

national bank. We define a local bank as one that operates in 10 or fewer counties; a regional

bank operates in more than 10 but fewer than 100 counties; and a national bank operates in 100

or more counties.42 Following a merger, the deposit demand for the acquirer bank j in county

i is given by ψηijt +
∑

k ψ
η
ikt, where ψikt denotes the demand shifters of the acquired banks.43

For our uniform pricing case, we also assume that the merged entity inherits the acquirer’s

non-interest cost kj.

41We impose mild restrictions: specifically, banks with assets above the 95th national percentile are omitted.
This is to exclude acquisitions of very large, single-county banks (usually online banks).
42Under these definitions, our sample includes 4,758 local banks, 277 regional banks, and 20 national banks.
43Recall that the shifters are normalized so that

∑
j ψ

η
ijt = 1.
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Panel (B) of Table 7 presents the results when acquired banks operate only in a single county.

In this case, deposit spreads tend to rise following the merger. The changes are more pronounced

in small counties, where the acquired banks have large market shares. The rise in spreads is

because the acquirers’ non-interest costs {kj} are generally higher than those of the targets. This

is partly offset by a reduction in the risk premia component, particularly when the acquiring

bank is either regional or national. Markups decline slightly despite the reduction in the number

of banks and higher county-level concentration. This happens because, under uniform pricing,

markups depend on banks’ average market shares rather than on county-specific concentration.

Acquirer banks in this experiment have, on average, slightly lower market shares across all their

locations relative to the targets. In Appendix Table D.3, we show results under local pricing,

assuming that the acquiring branch inherits the same non-interest cost structure {kij} as the

acquired branch. This assumption leads to a reduction in deposit spreads. The effects on risk

premia and markups remain similar to those reported in Table 7. Panel (C) shows results

when acquired banks operate in at most two locations. In this case, changes in risk premia are

roughly twice as large. These exercises highlight the potential for further diversification gains

in the banking system at the end of our sample.

Our third experiment examines the impact of changes in the spatial distribution of economic

activity. Specifically, we analyze a scenario in which the largest deposit markets become rela-

tively larger (Panel D). This is a simple way to capture the continued rise in spatial inequality,

consistent with trends observed in recent decades (e.g., Gaubert et al., 2021). Formally, we

increase market size (µi) by 10% for all large counties, while holding total deposits constant by

proportionally reducing µi in all other counties.44 This reallocation increases banks’ overall ex-

posure to larger markets, which also happen to be relatively less risky. This lowers risk premia,

with the largest reductions in small and medium-sized counties.

Our final exercise aims to quantify the exposure of smaller counties to changes originating

in larger counties. Specifically, we double the volatility of deposit demand in large counties.

Unsurprisingly, this leads to higher risk premia and spreads for large counties. More interest-

ingly, spreads in small/medium counties also rise significantly (almost half as much as in large

counties). If large counties become relatively larger, these spillovers could become even larger.

Appendix D describes a few more counterfactual exercises. First, we examine (separately)

the impact of a 1 percentage point increase in the non-interest cost kj for local, regional, and

national banks. We find that when local banks experience higher costs, small counties see a

44We classify counties above the 90th percentile in income as “large.” We hold fixed the ratio ρikσiσk

µiµk
to avoid

mechanically affecting risk premia.
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notable reduction in risk premia, as market shares shift toward more diversified regional and

national banks. This partially offsets the effect of higher costs. In contrast, higher costs for

larger banks lead to increased risk premia, amplifying the effect. Second, we study how changes

in households’ relative preferences (captured by the the relative demand shifters, ψij) across

bank types affect deposit spreads and risk premia. When households’ preferences shift away

from local banks, regional and national banks gain market share, resulting in lower risk premia,

particularly in small and medium-sized counties.

7. Local Lending

The analysis so far assumed that banks’ lending opportunities are not directly related to

the locations of their branches. Moreover, returns were linear, which made the distinction

between different types of assets (loans, securities, etc.) irrelevant. In this section, we relax

these assumptions with two modifications to our baseline model. First, we allow banks to hold

two types of assets: local loans Lj and securities Sj. The former can only be extended in

states where the bank has branches, i.e., Lj =
∫
MS

j
Lijdi where MS

j is the set of states in

which bank j has at least one branch. We assume that loan markets operate at the state level,

partly for tractability and partly to capture the fact that lending activity is arguably less ‘local’

(i.e. branch-intensive) than deposit-taking.45 This captures forms of lending where physical

proximity to the borrower is useful, e.g., loans to small businesses. Second, we introduce

curvature in the return functions for both loans and securities, capturing diminishing marginal

returns. We will show that, even with these changes, the optimal pricing equation remains

identical to the baseline version. Here, we present only the main equations, relegating detailed

derivations to Appendix C.

We start by characterizing bank j’s gross interest revenue, denoted Rev(Aj), as a function

of total assets Aj = Lj + Sj:

Rev (Aj) ≡ max
{Lkj}∀k∈MS

j
,Sj

E
∫
MS

j

(
R + zj −

1

2
αiαjLij

)
Lijdi+

(
R + zj −

1

2
βjSj

)
Sj, (36)

s.t. Aj =

∫
MS

j

Lkjdk + Sj.

This specification allows for diminishing marginal returns on both types of assets. For loans,

we parameterize curvature as a combination of market-specific and bank-specific components

45In a slight abuse of notation, we use the subscript i to index the loan market as well.
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—αiαj.
46 We define ϱj ≡

∫
i∈MS

j

1
αi
di, as the average curvature across all locations in which a

bank operate. From Equation (36), the optimal bank-level choices of loans and securities are

given by Lj = ℓjAj and Sj = (1− ℓj)Aj, where

ℓj ≡
ϱjβj

ϱjβj + αj
. (37)

Given Lj, the optimal amount of loans in each k is given by

Lij =
Lj
ϱjαi

. (38)

Thus, a bank’s lending in i is a function of the curvature in that market relative to the average

curvature of the bank. Total lending in state i is then: Li =
1
αi

∑
j∈i

Lj

ϱj
.

Substituting in Equation (36), we get that banks’ interest income is given by:

Rev (Aj) = (R + zj)Aj −
1

2
ϑjA

2
j where ϑj ≡

αj
ϱj
lj. (39)

Given this revenue function, one can show that the optimal deposit spreads are given by:

R−RD
j =

η (1− sj) + θsj
η (1− sj) + θsj − 1

[
κj − Ezj + ϑjAj + χjE (Dj)

∫
k∈Mj

ωij
ρikσiσk
µiµk

dk

]
, (40)

with sj and κj being defined as in Section 3. Note that this pricing equation is almost identical

to the one of our baseline model.47 The only difference is the ϑjAj term, which reflects the

effect of bank-level curvature in asset returns. This implies that the decompositions of deposit

spreads in the preceding sections go through unchanged.

More interestingly, this version of the model allows us to examine how industry structure

affects lending at the local level. To this end, we first estimate the state-level parameters

{αi} using data on small business loan originations. Specifically, we choose {αi} to minimize

the distance between model-implied shares of loans by location ({Li/L}) and their empirical

counterparts (see Appendix C.5 for details).48 To recover the bank-level parameters, we follow

a similar strategy as in the baseline: assume ϑj is inversely proportional to total assets—that

is, ϑjAj = ϑ, where ϑ is identical across banks. Given this, we can recover (αj, βj) using the

optimality conditions above.

46In Section 8.2, we also allow for heterogeneity in market-level returns, zij .
47It is easy to show that this robustness also obtains under local pricing.
48This estimation is computationally demanding—even at the state level—since a change in a given αi impacts
all banks operating in that location.
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Figure 11. Changes in Lending and Deposit Spreads

(a) Higher Bank Curvature

∆ Deposit Spreads ∆ Deposits ∆ Loans

(b) Mergers and Acquisition

∆ Deposit Spreads ∆ Loans, Total ∆ Loans, Reallocation

Notes: The maps display state-level changes in deposit spreads (under uniform pricing), deposit quantities,
and lending for two counterfactual experiments. Panel (A) shows the effects of an increase in the curvature
parameter χ. The left panel shows changes in deposit spreads, the middle panel shows change in expected
deposits, and the right panel shows changes in loans. Panel (B) presents results from an M&A scenario in
which top regional banks acquire banks operating in a single market. The left panel displays changes in deposit
spreads following the mergers, the middle panel shows the total change in lending, and the right panel isolates
the portion attributable to the “reallocation channel.” Units are log points ×100.

We then revisit the counterfactual exercises from Section 6, focusing explicitly on implications

for lending. We restrict attention to the uniform pricing case here, leaving details for local

pricing to the appendix.

First, we examine the counterfactual in which banks’ curvature parameter χ increases (Panel

A of Figure 11). This leads to larger deposit risk premia, implying wider spreads (left map)

and lower deposits (middle map), particularly in states (e.g. in the Midwest) served by less

diversified banks. Interestingly, the right map shows the effects on lending are more broad-

based: they fall not only in states with the large drops in deposits, but also in states like New

York, Massachusetts, and Texas. Intuitively, (relatively) geographically undiversified banks
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play a non-trivial role in local lending markets in these states, even though their effect on

deposit markets is very modest.

Next, we analyze the acquisition of local banks—defined as those operating in a single

county—by the largest regional banks, as defined in Table 7. Panel B of Figure 11 displays

the results. The most substantial declines in local lending occur in the Midwest and South.

These reductions are primarily driven by a “reallocation channel” (the right panel) which shows

the effect on local lending from directly reallocating all assets (both loans and securities) from

the acquired bank to the acquirer. Since large regional banks tend to invest more heavily in

larger markets compared to local banks, regions with a significant presence of local banks ex-

perience larger reductions in lending from this type of consolidation. The change in industry

structure also leads to higher deposit spreads—and thus lower deposit funding—in Midwestern

and Southern states. These funding-side effects modestly amplify the initial reallocation-driven

reduction in lending.

8. Extensions and Robustness

We present two extensions of our baseline model. First, we introduce other assets that provide

liquidity, such as cash. Second, we consider an alternative timing assumptions in which the

curvature of banks’ profits arise from diminishing marginal returns on loans.

8.1. Other Liquid Assets

In our baseline model, deposits were the sole source of liquidity. In this subsection, we

extend our framework to allow for multiple assets providing liquidity benefits. We modify

the preferences of the representative household as follows: u (C,X) = C − ξ log(X), where X

denotes a liquidity composite defined by the following aggregator

X =

(∫
ϕiX

θ−1
θ

i di

) θ
θ−1

, (41)

where Xi is a county-level composite of liquidity services from a portfolio of assets:

Xi =

(∑
l

ζlX
ε−1
ε

li +D
ε−1
ε

i

) ε
ε−1

. (42)

The parameter ε captures the elasticity of substitution between liquidity services from differ-

ent assets, while the parameters {ζl}∀l reflect share weights. Under this specification, the {ϕi}
shocks affect county-level demand for all liquidity services, not just deposits. For simplicity and
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clarity of exposition, we consider a single additional asset—cash—which pays a gross return of

1 and has share parameter ζ. Appendix C.6 presents the full derivations for the general case

with an arbitrary set of assets.

We denote the household’s cash holdings in county i by Mi. The county-level demands for

cash, deposits, and overall liquidity services are, respectively:

R− 1

R−RX
i

= ζ

(
Mi

Xi

)− 1
ε

,
R−RD

i

R−RX
i

=

(
Di

Xi

)− 1
ε

,
R−RX

i

R−RX
= ϕi

(
Xi

X

)− 1
θ

, (43)

with ideal spread indices defined as:

R−RX
i =

(
ζε (R− 1)1−ε +

(
R−RD

i

)1−ε) 1
1−ε

, (44)

R−RX =

(∫
ϕθi
(
R−RX

i

)1−θ
di

) 1
1−θ

. (45)

The individual bank’s deposit demand in county i remains as in Equation (3). Combining

this with Equation (43), we have:

Dij = ψηij

(
R−RD

ij

R−RD
i

)−η (
R−RD

i

R−RX
i

)−ε

ϕθi

(
R−RX

i

R−RX

)−θ

X. (46)

When setting spreads, banks now internalize not only their impact on the county-level deposit

spread RD
i , as in the baseline model, but also on the county-level liquidity price index RX

i .

Hence, the elasticity of demand is now a weighted average of the three structural elasticity

parameters η, ε, and θ:

d lnDij

d ln
(
R−RD

ij

) = −
[
(1− sij)η + sij θ̂i

]
, (47)

where θ̂i = θ(1− sMi ) + sMi ε and sMi ≡ 1− R−RD
i

R−RX
i

Di

Xi
represents the market share of cash. This

nests our baseline model when sMi = 0. Compared to the baseline, markups now vary in the

cross-section and over time due to fluctuations in cash market shares sMi .

We calibrate ε by targeting the elasticity of the aggregate cash-to-deposit ratio with respect

to R. Specifically, we use monetary policy shocks as instruments for exogenous variation in

R, estimating the reduced-form elasticity of cash-to-deposits (see Appendix D.7). Note this

reduced-form elasticity differs from the structural parameter ε because changes in R also affect

equilibrium deposit spreads. Our estimation yields ε = 1.24, smaller than our estimate for θ.

We allow the share parameter ζ to vary over time, setting it to match the aggregate cash-to-

deposit ratio.
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Figure 12. Changes in (log) Spreads, 1993-2019, by County — Cash Extension

(a) Markups and Risk Premia (b) Diversification

Notes: Following the decomposition in Equation (32), Panel (A) shows changes in the markup and risk pre-
mium components of deposit spreads between 1993 and 2019 under the uniform-pricing model with the cash
extension, by county income deciles. Blue dots indicate model-implied changes in risk premia, while red dots
represent changes in markups. Panel (B) further decomposes the change in risk premia into contributions from
“diversification gains,” as defined in Equation (33). Units are log points ×100.

Panel (A) of Figure 12 shows changes in risk premia and markups between 1993 and 2019.49

The estimated reduction in risk premia remains similar to the baseline (see Figure 8), while

the decline in markups is more pronounced. This is because the market share of cash, sMi ,

declined significantly, from an average of 39% in 1993 to 15% in 2019. Given that ε < θ, the

resulting increase in θ̂i pushes down markups. Panel (B) decomposes the changes in risk premia

into contributions from diversification gains. The results remain quantitatively similar to the

baseline, with diversification gains explaining a larger share of the reduction in risk premia for

smaller counties. Overall, introducing cash leads to a very similar narrative about the evolution

of risk and market power over time.

8.2. Alternative Timing and Source of Curvature

In our baseline specification, the risk premium component of deposit spreads arises due to

a combination of loan commitments and costly rebalancing in the interbank market. We now

consider a modified version where banks can adjust their loan commitments after shocks have

been realized but face diminishing marginal returns on lending. In Appendix C.7, we study a

related timing assumption combined with a linear lending technology. In that setting, curvature

49While not shown, the cross-sectional effects of risk premia and markups on deposit spreads are quantitatively
similar to the baseline. Markup effects show the same patterns as in the baseline, albeit with somewhat larger
magnitudes.
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in banks’ problem is introduced either by assuming that banks directly dislike variability in

deposits or by regulatory constraints that penalize deposit volatility. Importantly, we show

that the equations characterizing optimal deposit spreads in these alternative specifications

closely parallel those from our baseline model.

Banks raise funds from households through equity, wholesale funding, and deposits, which

operate as in the baseline model. However, instead of ex ante loan commitments, we now assume

that banks allocate the total funds available to them ex post—that is, after deposit shocks are

realized.50 Crucially, the lending technology now features decreasing marginal returns: the

return on loans is R + zj − χj

2
Lj, where χj > 0 indexes the degree of diminishing returns.

The timing of events is as follows. First, banks choose deposit rates RD
ij and wholesale

funding Hj. Second, all shocks are realized, and households allocate deposits across banks by

choosing {Dij}. Third, banks make and collect on loans. As a result, the quantity of loans Lj

is stochastic and depends on the realized {ϕi} shocks.

Under these assumptions, the ex post return function Πj(·) is given by:

Πj({Dij}) =
(
R + zj −

χj
2
Lj

)
Lj −

(
R +

νj
2
H∗
j

)
H∗
j , (48)

where Lj = Ej +H∗
j +

∑
i

Dij,

so that Π′
ij ≡

dΠj

dDij
= R + zj − χjLj. Under local pricing, optimal deposit spreads are charac-

terized by (see Appendix C.7 for derivations):

R−RD
ij =

η(1− sij) + θsij
η(1− sij) + θsij − 1

[
kij − E(zj) + χjE(Lj)(1 + Γ̃ij)−

Cov(zj, ϕθi )
µi

]
, (49)

where Γ̃ij ≡ ωDj

∫
k∈Mj

ωkj
ρikσiσk
µiµk

dk,

and ωDj ≡
∫
k∈Mj

E(Dkj) dk

E(Lj)
denotes the share of total loans financed by deposits. The term Γ̃ij

corresponds to the baseline model’s risk term scaled by the deposit share ωDj .

Equation (49) closely parallels the baseline pricing equation, with two key differences. First,

it includes an additional term that penalizes bank size, reflecting the curvature in lending

technology. Second, and more importantly, it features a covariance term that captures the

relationship between lending returns and deposit demand shocks. When Cov(zj, ϕθi ) > 0, i.e.,

50For simplicity, we abstract from ex post interbank borrowing and lending. Including it would yield a more
complex expression for the curvature term—reflecting curvature in both markets—but would not change the
main conclusions.
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when deposit flows into county i tend to occur in periods of high returns, the bank optimally

sets a lower deposit spread in that location.

To assess the quantitative relevance of the covariance term, we proxy zj using bank-level

average loan returns from Call Report data and compute
Cov(zj ,ϕθi )

µi
directly. Our estimates show

that this term is small, with a median value of −1.21 × 10−5 (5th and 95th percentiles are

−1.68 × 10−3 and 1.13 × 10−3, respectively). In other words, accounting for the interaction

between lending returns and deposit shocks has little impact on our estimates of risk premia in

deposit spreads. Consequently, the spread decompositions under this specification are nearly

identical to those in the baseline.51

These conclusions extend to the uniform pricing case as well. For completeness, we show the

optimal spreads and risk premia under that protocol:

R−RD
j =

η(1− sj) + θsj
η(1− sj) + θsj − 1

[
κj − E(zj) + χjE(Lj)(1 + Γ̃j)−

∫ 1

0

ω̃kj
Cov(zj, ϕθk)

µk
dΛj(k)

]
,

(50)

where the bank-level risk term is defined as:

Γ̃j ≡ ωDj

∫
k∈Mj

ω̃kj

∫
i∈Mj

ωij
ρikσiσk
µiµk

di dk. (51)

We can also extend this setup to allow for local lending, where each bank allocates loans

across the locations in which it operates. Unlike the baseline local-lending model, we now allow

for heterogeneity in loan returns across locations, indexed by zkj. For a given total loan amount

Lj, the bank chooses {Lkj}k∈Mj
to maximize:

Revj(Lj) = max
{Lkj}

∫
k∈Mj

(
R + zkj −

χj
2
Lkj

)
Lkj dk, (52)

subject to Lj =

∫
k∈Mj

Lkj dk,

where Revj(Lj) is the bank’s total revenue from allocating Lj across markets. One can show

that the optimal allocation of loans takes the form:

L∗
kj(Lj) =

1

χj
(zkj − z̄j) +

Lj∫
k∈Mj

dk
, (53)

51The size penalty does not materially affect our results, as we impose χ = χjE(Lj) in our estimation. The only
minor difference arises from the ωD

j term, which scales the risk term by the share of deposits in total loans.
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where z̄j ≡
∫
k∈Mj

zkj dk∫
k∈Mj

dk
is the bank’s average loan return across locations. Substituting this

allocation back into the objective yields:

Revj(Lj) =

(
R + z̄j −

χ̃j
2
Lj

)
Lj, with χ̃j ≡

χj∫
k∈Mj

dk
. (54)

Substituting this into the general return function, we get:

Πj({Dij}) =
(
R + z̄j −

χ̃j
2
Lj

)
Lj −

(
R +

νj
2
H∗
j

)
H∗
j , (55)

where Lj = Ej +H∗
j +

∫
i∈Mj

Dij di.

This return function takes the same form as in Equation (48), implying that the pricing equa-

tions for deposit spreads remain unchanged.

9. Conclusion

In the preceding sections, we perform a structural evaluation of the effect of idiosyncratic

risk and market power in banking combining a rich multi-market model with granular data

at the bank- and county-level. The calibration uncovers a significant role for risk premia in

the deposit rate variation, both in the cross-section and over time. We exploit the tractability

of the model to conduct a number of counterfactual experiments exploring the implications of

continued consolidation in the industry, increasing spatial inequality and shocks.

There are several avenues for future research. Our analysis takes branch location choices

of banks as exogenous. While this assumption has no bearing on our empirical strategy—our

estimates for parameters related to risks and costs remain valid—it abstracts from changes

in location choices in our counterfactual experiments. Formally incorporating this margin is

conceptually straightforward but computationally almost infeasible in this setting with multiple

sources of risk and heterogeneity, both across banks and markets. We leave this, along with the

development of a full-fledged dynamic model, as challenging yet promising directions for future

work. Similarly, given our focus on deposit markets, we adopted a more simplified approach

on the lending side. Incorporating risk and market power considerations in lending markets is

another valuable extension.
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Appendix A. Data

A.1. Data Sources

Summary of Deposits (SOD). Publicly available through the Federal Deposit Insurance

Corporation (FDIC), the SOD is the annual survey of branch office deposits. It records bank-

reported information as of June each year. It includes unique identifiers for branches (UN-

INUMBR) and banks (IDRSSD), location data (zip code, city, county, state), and branch-level

deposits.

Call Reports. Reported quarterly to the Federal Financial Institutions Examination Coun-

cil (FFIEC) via forms 031, 041, and 051, these reports provide detailed bank-level balance

sheet and income statement data. Each bank is identified via IDRSSD, which enables us to

link them with SOD. While Call Report data is publicly available, we use an internally main-

tained version by the Board of Governors that adjusts for mergers and acquisitions. The data

spans from 1985:Q1 and includes information on deposit types and maturities, detailed assets

and liabilities, interest income from loans, and interest expenses on deposits.

RateWatch. This proprietary weekly survey collects product-level interest rates from bank

branches, covering deposit products such as CDs and money market accounts. It contains

identifiers for branches and banks, as well as location information, which enables linkage to

SOD and Call Reports. Comprehensive data coverage begins in 2011.

County-level economic activity and rate of return. Annual county-level economic

activity data since 1969 is obtained from the Bureau of Economic Analysis (BEA). For R, the

return on illiquid investment, we use the 5-Year High Quality Market Corporate Bond Spot

Rate (HQMCB5YR) available via FRED. The series is monthly; we compute annual averages.

A.2. Construction of Datasets

We combine these sources to construct an annual bank-county-level panel. Throughout, we

focus on time and savings deposits, excluding checking accounts. To do so, we scale branch-level

deposits from SOD using the bank-level ratio of time and savings deposits to total deposits from

Call Reports. Since Call Report data prior to 2004 excludes deposit details for thrifts reporting

on form 1313, we exclude those institutions from our analysis. We aggregate branch-level
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deposits from SOD to the bank-county-year level, tracking the number of branches within each

triplet.52

Bank-county deposit rates from RateWatch. We use RateWatch to construct bank-

county-year interest rates. The data comes from three files: ‘survey’, ‘account information’,

and ‘account join’. The ‘survey’ file records account numbers, product types, interest rates,

and survey dates. These are linked using a unique RateWatch account identifier. The ‘account

information’ file contains institutional details, including branch location and the FDIC branch

identifier (UNINUMBR). The ‘account join’ file links branches to their designated rate setters—

not all branches choose their own deposit rates. We merge these files sequentially using the

account number, then link to SOD using UNINUMBR. Finally, we use SOD to associate each

branch with its parent bank.

To prepare the RateWatch data, we first collapse the survey component to yearly frequency.

We then merge account information with account join data, followed by a merge with SOD via

UNINUMBR. Lastly, we combine this with the yearly survey using the account identifier. The

resulting dataset covers approximately 80% of total deposits in SOD, representing around 70%

of bank-county observations.

We use four deposit products: 12-, 24-, and 60-month certificates of deposit (12MCD10K,

24MCD10K, 60MCD10K), and money market deposit accounts (MM25K). Promotional rates

are excluded. As the data is at the branch-product-year level, we collapse it to the bank-county-

product-year level, weighting by branch-level deposits.53

To compute a composite deposit rate at the bank-county-year level, we use Call Report data

on time deposit maturities to weight RateWatch interest rates. Specifically, we calculate each

bank’s share of time deposits in three buckets: under 1 year, 1-3 years, and over 3 years. These

shares are used to compute weighted averages of CD rates. Next, we use the ratio of time

deposits to total time and savings deposits (including MMDAs) to combine CD and MMDA

rates. All data is aligned to SOD reporting dates by using only second-quarter observations.

Bank-level deposit rates from Call Reports. In our analysis, we rely on RateWatch data

for our local pricing specification. A key limitation, however, is that comprehensive coverage

begins only in 2011. To address this, we construct a proxy for bank-level deposit rates using Call

Reports, which serves as the basis for our uniform-pricing specification. Specifically, we collect

time-series data on deposit volumes and interest expenses for time deposits and savings accounts

52We restrict SOD data to the 50 US states and adjust some county names for consistency with BEA county-level
GDP data.
53We assume equal weights across products due to limited data on product-level volumes.
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(including MMDAs) starting in 1990. For each bank, we compute the ratio of annualized

interest expenses to volumes by summing each component over the calendar year.54 When this

breakdown is missing, we fall back on the average interest rate across all domestic deposits.

Bank funding structure. Finally, we use Call Reports data to compute bank-level ratios

of deposits, equity, and wholesale funding to total assets. We define bank equity as total assets

minus total liabilities. Given values for deposits (dj) and equity (ej) to total assets, we compute

wholesale funding to total assets as hj = 1− dj − ej. We also compute ratios of bank loans to

assets and securities to assets.

Appendix B. Motivation: Additional Evidence

Deposit Risk and Geographical Diversification. To motivate our main analysis, this sec-

tion illustrates the potential gains from banks’ geographic diversification. Figure B.1 presents

two panels: the left panel shows the distribution of bank-level changes in deposits and loans,

while the right panel shows county-level changes in deposits. For the bank-level analysis, we

estimate the regression

∆ log xjt = γt + γj + ϵxjt,

where xjt denotes either loans or deposits, and γt and γj are year and bank fixed effects. The

histogram displays the residuals, expressed in percentage points. For the county-level analysis,

we estimate

∆ logDit = γt + γi + ϵit,

where γi are county fixed effects.

Two main results emerge. First, bank-level deposit growth is as volatile as loan growth,

highlighting the relevance of deposit risk. Second, county-level deposit growth also exhibits

substantial volatility: even after accounting for county and year fixed effects, the interquartile

range remains wide, with the 25th percentile at −4.8% and the 75th percentile at 4.6%.

The preceding analysis highlights that banks face significant deposit risk. Constructing a

measure of exposures to deposit shocks is challenging since banks’ branching decisions are a

potentially key source of deposit variability, especially for larger institutions. That is, because

branch networks evolve, exposures are time-varying and not directly captured by second mo-

ments of deposit growth in bank-level time series. To address this, we assume a stationary

54Granular data on interest expenses by deposit maturity is unavailable.
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Figure B.1. Bank- and County-level Variation: Deposits vs. Loans

Bank-level Variation, Deposits and Loans County-level Variation, Deposits

Notes: The left panel shows the volatility of bank-level deposit growth and bank-level loan growth, after
controlling for bank and year fixed effects. The right panel shows the volatility of county-level deposit growth,
after controlling for county and year fixed effects.

covariance matrix of deposit growth at the county level and exploit time-series variation using

weights based on banks’ deposit shares across counties.

More specifically, we analyze how cross-county heterogeneity translates into bank-level de-

posit volatility. Let ωτij denote bank j’s deposit share in county i at time τ , defined as

ωτij =
Dτ

ij∑
i∈Mj

Dijτ
, where Dτ

ij is the stock of deposits bank j holds in county i at time τ , and Mj

is the set of location in which bank j operates at. We then construct bank j’s deposit changes

(in pp), induced by changes in county-level deposits, as ∆ lnDτ
jt =

∑
i∈Mj

ωτij∆ lnDit, where

Dit are county-level deposits in period t. The time-series standard deviation is given by

στj =

√
1

T

∑
t

(
∆ lnDτ

jt −∆ lnDτ
jt

)2
. (B.1)

We use the yearly panel στj over 1995-2019 to study how exposure to deposit volatility varies

with bank characteristics. Specifically, we regress στj on dummies (Iτk) for the number of counties

in which a bank operates, along with bank (αj) and time (ατ ) fixed effects:

στj = β1 +
∑
k∈K

βk × Iτk + αj + ατ + ϵjτ . (B.2)

Figure B.2 plots the estimated βk coefficients from Equation (B.2). Exposure to deposit volatil-

ity declines monotonically with the number of counties a bank serves, with banks operating
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Figure B.2. Banks’ Exposure to Deposit Fluctuation Risk
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Notes: The figure displays the estimated βk coefficients from Equation (B.2), using annual deposit data from
1995 to 2019. Units are in percentage points.

Figure B.3. Banks’ Exposure to Loan Origination Risk
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(b) Mortgages
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Notes: The figure shows results from the regression in Equation (B.2), using loan origination data—rather than
deposits—to compute the στ

j variable. Panel (A) presents results for small business loan originations from the
Community Reinvestment Act. Panel (B) displays results for mortgage originations from the Home Mortgage
Disclosure Act. The sample period is 2005-2019. Units are in percentage points.

in more than 50 counties having 4 pp lower deposit volatility than banks operating in 1-5

counties.55 Similar results hold when sorting by bank size (not shown).

Figure B.3 extends this analysis to loan originations, also in pp. Panel (A) focuses on

small business loans and Panel (B) on mortgages.56 Small business loan data come from the

Community Reinvestment Act (CRA), and mortgage data from the Home Mortgage Disclosure

Act (HMDA), both from the Federal Reserve Board. In both cases, exposure to risk in loan

origination declines with geographic reach.

55Because the panel is unbalanced (due to exits and M&A), we restrict the sample to banks with at least 10
years of data to ensure stable variance estimates. Results are robust to alternative thresholds.
56The sample period is 2005-2019. Loan originations data are not consistently available prior to 2005.
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Figure B.4. County-level Concentration in Deposit Markets

Notes: The figure shows the county-level Herfindahl-Hirschman Index in deposit markets for 1993 (red dots)

and 2019 (blue dots), calculated as HHIit =
∑

j∈i

(
Djit∑
j∈i Djit

)2
, where Djit denotes deposits held by bank j in

county i at time t.

Concentration. In Section 2, we showed that there were both positive and negative changes

in county-level HHIs between 1993 and 2019. Figure B.4 shows that smaller counties tend to

exhibit higher Herfindahl-Hirschman indices, both in 1993 (red dots) and 2019 (blue dots).

Appendix C. The Model: Derivations and Additional Material

C.1. Microfoundation for CES Demand System

We provide a simple microfoundation for the CES demand system assumed in the baseline

model. Following Verboven (1996), we assume there are heterogeneous depositors making

independent discrete choices. In particular, suppose there is a unit measure of ex-ante identical

depositors ℓ ∈ [0, 1], each with i.i.d. random preferences ζℓij for depositing funds at branch ij.

These preferences follow a Gumbel distribution:

F (ζ) = exp

− N∑
i=1

(
Ni∑
j=1

e−(1+η̄)ζij

) 1+θ̄
1+η̄

 .
Depositors value deposit services but face an opportunity cost yℓ = dℓij(R − RD

ij ). In this

framework, the parameter η̄ governs the correlation of draws within a location (i.e., the degree

of substitution across banks within a county), while θ̄ governs the variance of draws across

locations (i.e., substitution across counties). After drawing ζ, depositor ℓ chooses the ij pair



Geographic Funding Risk and Market Power in Deposit Markets 55

that solves:

max
ij

{ln dℓij + ζij} = max
ij

{
ln yℓ − ln(R−RD

ij ) + ζij
}
.

The probability that depositor ℓ chooses branch ij is:

Probℓ(R
D
ij , R

D
−ij) =

(R−RD
ij )

−(1+η̄)∑Ni

j=1(R−RD
ij )

−(1+η̄)︸ ︷︷ ︸
Probℓ(Choose bank j|Choose location i)

(∑Ni

j=1(R−RD
ij )

−(1+η̄)
) 1+θ̄

1+η̄

∑N
i=1

(∑Ni

j=1(R−RD
ij )

−(1+η̄)
) 1+θ̄

1+η̄︸ ︷︷ ︸
Probℓ(Choose location i)

.

We can then compute Dij as:

Dij =

∫
Probℓ(R

D
ij , R

D
−ij) · dℓij dF (y) = Probℓ(R

D
ij , R

D
−ij) ·

Y

R−RD
ij

.

Define the price indexes:

R−RD
i ≡

[
Ni∑
j=1

(R−RD
ij )

−(1+η̄)

]−1/(1+η̄)

,

R−RD ≡

[
N∑
i=1

(R−RD
i )

−(1+θ̄)

]−1/(1+θ̄)

.

Note that total deposits satisfy D
(
R−RD

)
=
∑

i

∑
j Dij(R−RD

ij ) = Y . Substituting for Y

and using the indexes above, we obtain:

Dij =

(
R−RD

ij

R−RD
i

)−η (
R−RD

i

R−RD

)−θ

D,

where η = η̄ + 2 and θ = θ̄ + 2.

C.2. General Bank Problem: Derivation of the Pricing Equation

We provide the derivation for optimal deposits spreads under our most general specification—

Equation (7) in the main text. Let Πj

(
{Dij}i∈Mj

)
≡ Π̂j

(
{Dij}i∈Mj

,
{
L∗
ij

}
i∈Nj

, F ∗
j

)
denote

bank’s realized profits net of all financing costs, except those related to deposits, from receiving

a vector of deposit inflows {Dij}i∈Mj
across the Mj set of markets in which it operates. The{

L∗
ij

}
i∈Nj

denotes the optimal loans made by bank j in location k across the set Nj of locations

—which does not need to be equal to the Mj set. The return on these loans may be stochastic

and heterogeneous across locations or banks. At this point, we do not need to make any
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assumptions on them. Lastly, the F ∗
j captures bank j’s all other sources of funding, which

include wholesale funding, inter-bank loans, equity, and others.

Assuming that the bank makes all its choices before observing the realization of shocks, then:{
L∗
ij

}
i∈Nj

, F ∗
j = argmax

{Lij}i∈Nj
,Fj

E
[
Π̂j

(
{Dij}i∈Mj

, {Lij}i∈Nj
, Fj

)]
. (C.1)

Given these definitions, the bank problem can thus be written as in Equation (6) in the main

text, which we rewrite below for convenience:

max
{RD

ij}i∈Mj

E
[
Πj

({
Dij

(
RD
ij

)}
∀i∈Mj

)
−
∫ 1

0

(
RD
ij + κij

)
· Dij

(
RD
ij

)
dΛj (k)

]
, (C.2)

where Λj(·) denotes the measure indexing counties in which bank j operates and Dij (·) captures
the demand for deposits faced by bank j in county i, which is a function of deposit rates.

Using the envelope theorem, the first-order condition with respect to RD
ij is as follows:

E
(
Π′
ij

∂Dij

∂RD
ij

)
− E (Dij)−

[
RD
ij + kij

]
E
(
∂Dij

∂RD
ij

)
= 0,

where Π′
ij ≡ ∂Πj(.)

∂Dij
is the bank-level marginal benefit from an additional unit of deposits in

location i. It is useful to rewrite the previous equation in terms of the derivative of deposits

with respect to deposit spreads, R−RD
ij . To this end, we define D′

ij ≡
∂Dij

∂R−RD
ij
Then, the previous

equation is given by:

−E
(
Π′
ijD

′
ij

)
− E (Dij) +

[
RD
ij + kij

]
E
(
D′
ij

)
= 0.

Dividing by E
(
D′
ij

)
, adding R to both sides, and after rearranging terms, we have that:

R−RD
ij = −E (Dij)

E
(
D′
ij

) + kij +R−
E
(
Π′
ijD

′
ij

)
E
(
D′
ij

) .

Working with the last term in the right-hand side, it is straightforward to show that

E
(
Π′
ijD

′
ij

)
E
(
D′
ij

) =

(
1 +

Cov
(
Π′
ij, D

′
ij

)
E
(
D′
ij

)
E
(
Π′
ij

))E
(
Π′
ij

)
.

Combining the last two equations, we get Equation (7) in the main text.

C.3. Baseline Model: Derivation of the Pricing Equations

Local Pricing. We provide additional derivations for optimal deposit spreads under local

pricing. As described in the main text, for a given equity Ej, each bank chooses deposit
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spreads R − RD
ij in each county i in which it operates, loans Lj, and wholesale funding Hj to

solve the problem in Equation (10). After replacing Bj with the bank’s balance sheet equation,

the problem can be written as follows:

max
{R−RD

ij},Lj ,Hj

E

[
zjLj −

∫ 1

0

(
R−RD

kj − κkj
)
DkjΛj(k)−

τj
2
E2
j −

νj
2
H2
j+

− χj
2

(
Lj −

∫ 1

0

DkjΛkj (k)−Hj − Ej

)2
]
.

It is straightforward to get the first order conditions for Lj and Hj. They are given by

zj =χjE
(
Lj −

∫ 1

0

DkjΛj (k)−Hj − Ej

)
,

νjHj =χjE
(
Lj −

∫ 1

0

DkjΛj (k)−Hj − Ej

)
.

As for deposits spreads, the first order condition with respect to R−RD
ij is

E
[
−DijΛj (i)− (R−RD

ij − κij)D′
ijΛj (i) + χj

(
Lj −

∫ 1

0

DkjΛj (k)−Hj − Ej

)
×D′

ijΛj (i)

]
= 0.

Replacing with the first order condition for Lj and after dividing by E
(
D′
ijΛj (i)

)
, we can

rewrite the previous expression as follows:

R−RD
ij = −E (Dij)

E
(
D′
ij

) + (kij − zj) + χj
Cov

(
D′
ij ,
∫ 1

0
DkjΛj (k)

)
E
(
D′
ij

) (C.3)

From the household’s optimality conditions —Equations (3) and (5) in the main text— we

can directly get an expression for D′
ij:

D′
ij = Dij

1

R−RD
ij

[
θ − η

θ

d lnDi

d lnR−RD
ij

− η

]
. (C.4)

Combining Equations (4) and (5) and after taking logs, we get

lnDi =θlnϕi + θln
(
R−RD

)
+

θ

η − 1
ln

(
Ji∑
j=1

ψηij
(
R−RD

ij

)1−η)
+ lnD,
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which implies that dlnDi

dlnR−RD
ij
= −θ ψη

ij(R−RD
ij)

1−η∑Ji
j=1 ψ

η
ij(R−RD

ij)
1−η . Substituting this last expression into equa-

tion (C.4):

D′
ij =Dij

1

R−RD
ij

[
(η − θ)

ψηij
(
R−RD

ij

)1−η∑Ji
j=1 ψ

η
ij

(
R−RD

ij

)1−η − η

]

=Dij
1

R−RD
ij

[(η − θ) sij − η] , (C.5)

where in the second equality we make use of our definition for county-level market shares, sij.

Substituting (C.5) back into Equation (C.3), we get:

R−RD
ij =

η (1− sij) + θsij
η (1− sij) + θsij − 1

κij − zj + χj
Cov

(
Dij ,

∫ 1

0
DkjdΛj(i)

)
E (Dij)

 , (C.6)

Lastly, by further working with the CES structure of our problem, it is easy to show that:

Cov (Dij , DkjΛkj)

E (Dij)
= E (DkjΛkj)

Cov
(
ϕθiϕ

θ
k

)
E
(
ϕθi
)
E
(
ϕθk
)

≡ E (DkjΛkj)
ρikσiσk
µiµk

. (C.7)

Replacing into Equation (C.6), after some algebraic manipulation we get our baseline pricing

equation under local pricing:

R−RD
ij =

η (1− sij) + θsij
η (1− sij) + θsij − 1

[
κij − zj + χjE (Dj)

∫
k∈Mj

ωij
ρikσiσk
µiµk

dk

]
, (C.8)

with E (Dj) ≡
∫ 1

0
E (DkjΛj (k)) and ωij ≡

E[DkjΛkj]
E(Dj)

.

Uniform Pricing. For the uniform-pricing case, each bank j sets a single deposit rate RD
j

across all the markets in which it operates. Its problem is as follows:

max
R−RD

j ,Lj ,Hj

E

[
zjLj −

∫ 1

0

(
R−RD

j − κkj
)
DkjΛj(k)−

τj
2
E2
j −

νj
2
H2
j+

− χj
2

(
Lj −

∫ 1

0

DkjΛkj (k)−Hj − Ej

)2
]
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The first-order conditions with respect to Lj and Hj are analogous to our local-pricing case.

On the other hand, the optimality condition with respect to deposit spreads R−RD
j is

E

[
−
∫ 1

0

DkjΛj (k)−
∫ 1

0

(R−RD
j − κkj)D′

kjΛj (k)+

+ χj

(
Lj −

∫ 1

0

DkjΛkj (k)−Hj − Ej

)
×
∫ 1

0

D′
kjΛj (k)

]
= 0.

Replacing with the first-order condition for Lj, and after dividing by E
(∫ 1

0
D′
kjΛj (k)

)
, we can

rewrite the previous expression as follows:

R−RD
j = −

∫ 1

0
EDkjΛj (k)∫ 1

0
ED′

kjΛj (k)
+ (κj − zj) + χj

Cov
[∫ 1

0
D′
kjΛj (k) ,

∫ 1

0
DkjΛkj (k)

]
∫ 1

0
ED′

kjΛj (k)
, (C.9)

where κj ≡
∫ 1
0 κkjED

′
kjΛj(k)∫ 1

0 ED′
kjΛj(k)

is a weighted-average of banks’ operating costs. Using again the

fact that D′
ij = Dij

1
R−RD

j
[(η − θ) sij − η] (Equation C.5), we can rewrite the first term in the

right-hand side of Equation C.9 as:

−
∫ 1

0
EDkjΛj (k)∫ 1

0
ED′

kjΛj (k)
= −

R−RD
j

(η − θ) sj − η
,

where sj ≡
∫ 1
0 skjE(DkjΛj(k))∫ 1
0 E(DkjΛj(k))

is a bank weighted-average market share. In addition, using

Cov(Dij ,DkjΛkj)
E[Dij ]

= E (DkjΛkj)
ρikσiσk
µiµk

(Equation C.7), the covariance term can be expressed as:

Cov
[∫ 1

0
D′
kjΛj (k) ,

∫ 1

0
DkjΛkj (k)

]
∫ 1

0
ED′

kjΛj (k)
= E (Dj)×

∫
i∈Mj

ω̃ij

(∫
k∈Mj

ωkj
ρikσiσk
µiµk

dk

)
di,

where ω̃ij ≡ [(η−θ)sij−η]E(DijΛj(i))∫ 1
0 [(η−θ)skj−η]E(DkjΛj(k))

is a weighted-average elasticity of substitution. Replacing

these last two expressions in Equation C.9, we get our pricing equation under uniform pricing:

R−RD
j =

η(1− sj) + θsj
η(1− sj) + θsj − 1

[
(κj − zj) + χjE (Dj)×

∫
i∈Mj

ω̃ij

(∫
k∈Mj

ωkj
ρikσiσk
µiµk

dk

)
di

]
.

C.4. Model Decompositions - Extensive Margin and Out-of-State Banks

In the main text, we decomposed county-level changes in risk premia to analyze the role

of entrants and exiters. In particular, Equation (34), which we rewrite below, shows that
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county-level changes in risk can be written as follows:

∆
∑
j∈Jit

sijtΓjt =Mi1

( ∑
j∈{J̃i1}

sij1
Mi1

Γj1 −
∑
j∈{Ĵi}

sij1
1−Mi1

Γj1

)
︸ ︷︷ ︸

Entrants vs. Survivors

+Mi0

( ∑
j∈{Ĵi}

sij0
1−Mi0

Γj0 −
∑

j∈{J̃i0}

sij0
Mi0

Γj0

)
︸ ︷︷ ︸

Survivors vs. Exiters

+
∑
j∈{Ĵi}

( sij1
1−Mi1

Γj1 −
sij0

1−Mi0
Γj0

)
︸ ︷︷ ︸

Within Survivors

,

where {Ĵi} denotes the set of survivors, {J̃i0} the set of exiters, and {J̃i1} the set of entrants,

and Mit ≡
∑

j∈J̃it sijt is the combined market share of banks in county i that operate only in

period t, with t ∈ 0, 1. We refer to the sum of the first two terms on the right-hand side of the

previous expression as the “extensive margin”.

In what follows, we further decompose the extensive margin into out-of-state and within-

state exiters and entrants. To this end, we first define α1
i be the fraction (relative to M1

i ) of

out-of-state entrants (and new banks). Similarly, we define α0
i to be the fraction (relative to

M0
i ) of out-of-state exiters (and dead banks). With these definitions, and after some algebra,

one can show that:

∆
∑
j∈Jit

sijtΓjt = α1
iM

1
i

∑
{j̃1}i

s1ij
α1
iM

1
i

Γ1
ij −

∑
{ĵ}i

s1ij
1−M1

i

Γ1
ij


︸ ︷︷ ︸

Out-of-state Entrants vs. Survivors

−α0
iM

0
0

∑
{j̃0}i

s0ij
α0
iM

0
i

Γ0
ij −

∑
{ĵ}i

s0ij
1−M0

i

Γ0
ij


︸ ︷︷ ︸

Survivors vs Out-of-state Exiters

+
(
1− α1

i

)
M1
i

∑
{j̃⋆1}i

s1ij(
1− α1

i

)
M1
i

Γ1
ij −

∑
{ĵ}i

s1ij
1−M1

i

Γ1
ij


︸ ︷︷ ︸

Within-state Entrants vs. Survivors

−
(
1− α0

i

)
M0
i

∑
{j̃⋆0}i

s0ij(
1− α0

i

)
M0
i

Γ0
ij −

∑
{ĵ}i

s0ij
1−M0

i

Γ0
ij


︸ ︷︷ ︸

Survivors vs. Within-state Exiters

+
∑
{ĵ}i

s1ij
1−M1

i

Γ1
ij −

∑
{ĵ}i

s0ij
1−M0

i

Γ0
ij︸ ︷︷ ︸

Within Survivors

(C.10)

The sum of the first two terms on the right-hand-side of Equation (C.10) capture the “out-

of-state extensive margin.” That is, changes in risk premia driven by banks entering or exiting

the state in which county i is located. The sum of the third and fourth terms capture the

“within-state extensive margin,” which is driven by banks that enter or exit county i but were
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already operating in the state in which i is located. In Figure 10 of the main text, we show

that more than half of the extensive-margin is explained by out-of-state entrants and exiters.

C.5. Local Lending

In this section, we provide details on analytical derivations for the local lending version of

the model presented in Section 7. Bank j can provide credit in the form of loans across the

locations (states) in which they have branches, Lj =
∫
MS

j
Lijdi, or in form of securities, Sj, so

that total assets are At = Lj + Sj. As in the baseline model, loans and securities are chosen

before shocks are realized. We first derive the revenue function of the bank in terms of assets,

and then explicit its maximization problem to show that optimal spreads have a specification

similar to the baseline’s. We focus on the uniform-pricing case, but derivations for local pricing

are analogous.

Given some assets Aj, the revenue function of bank j is given by:

Rev (Aj) = max
{Lij},Sj

E
[∫ 1

0

(
R + zLj − 1

2
αiαjLij

)
LijdΛj(i) +

(
R + zSj − 1

2
βjSj

)
Sj

]
, (C.11)

s.t. Aj =

∫ 1

0

LijdΛj(i) + Sj.

The first order conditions with respect to Sj and Lij are given by:

µj = R + E
(
zSj
)
− βjSj,

µj =
(
R + E

(
zLj
))

− αiαjLij,

where µj is the associated Lagrange multiplier. Combining these two expressions, and assuming

E
(
zLj
)
= E

(
zSj
)
, we get:

Lij =
βj
αiαj

Sj. (C.12)

Summing across all locations in which the bank operates:

Lj =
βj
αj
Sj

∫ 1

0

1

αi
dΛj(i),

=
βj
αj
ϱjSj, (C.13)

where ϱj ≡
∫ 1

0
1
αi
dΛj(i). Replacing equation (C.13) back in equation (C.12), we get Lij as a

function of Lj:

Lij =
1

αiϱj
Lj. (C.14)
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Then, using Lj + Sj = Aj and equation (C.13), we get Lj = ℓjAj and Sj = (1 − ℓj)Aj, where

ℓj ≡ ϱjβj
ϱjβj+αj

. Substituting the solutions for Lij and Sj back into the revenue function, and after

combining terms, we obtain:

Rev (Aj) =E
{
(R + zj)

(∫ 1

0

1

αiϱj

ϱjβj
ϱjβj + αj

dΛj(i) +
αj

ϱjβj + αj

)
Aj

}
+

−E
{∫ 1

0

1

2

αj
ϱj

ϱjβj
ϱjβj + αj

Aj
1

αiϱj

ϱjβj
ϱjβj + αj

AjdΛj(i) +
1

2
βj

αj
ϱjβj + αj

Aj
αj

ϱjβj + αj
Aj

}
=E

[
(R + zj)Aj −

1

2
ϑjA

2
j

]
, (C.15)

where we defined ϑj ≡ αj

ϱj
lj to simplify notation. Based on this revenue function, the problem

of the bank is analogous to that of our baseline model. That is, each bank chooses deposit

spreads, assets, and wholesale funding to solve:

max
{RD

j },Aj ,Hj

E
[(
R + zj −

1

2
ϑjAj

)
Aj −

∫ 1

0

(
RD
j + kij

)
DijdΛj(i)−

(
R +

νj
2
Hj

)
Hj −

(
R +

χj
2
Bj

)
Bj

]
,

s.t. Aj =

∫ 1

0

DijdΛj(i) +Hj +Bj + Ej.

Following similar steps to the ones in Appendix C.3, we get that optimal spreads are given

by

R−RD
ij =

η (1− sj) + θsj
η (1− sj) + θsj − 1

[
κj − E (z̃j) + χjE (Dj)

∫ 1

0

ωkj
ρikσiσk
µiµk

dΛj(k)

]
, (C.16)

where E (z̃j) ≡ E (zj)− ϑjAj.

Mapping to the Data

We now describe how we solve for the vector {αi}. Summing Equation (C.14) across all

locations and dividing by total lending L ≡
∑

i Li, we obtain:

Li
L
({αi}) =

1

αi

∑
j∈i

1

ϱj

Lj
L
, (C.17)

where ϱj denotes the bank-level term from the model.

We proxy location-level lending using county-level small business loan originations from the

Community Reinvestment Act (CRA), denoted by Li.57 Aggregating across counties gives us

total loan flows, L =
∑

i Li. We then solve for {αi} to minimize the distance between model-

implied and data-based loan shares, targeting the objective:
∑

i

∣∣∣∣Li

L − Li

L
({αi})

∣∣∣∣.58 Specifically,

57Results are nearly identical when using mortgage originations.
58This implicitly assumes that the relative flows in the data, Li

L , are proportional to relative loan stocks.
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we solve:

min
{αi}

√∑
k

Lossk ({αi})2, (C.18)

where Lossk(·) ≡
Lk
L

− 1

αk

∑
j∈k

(
1∑

i∈MS
j

1
αi

· Lj
L

)
.

This minimization problem recovers {αi} up to a scaling constant. We normalize the vector so

that
∑

i αi = 1.

Solving for {αi} is non-trivial because changes in the curvature parameter for one location

(say, i) indirectly affect other locations (e.g., k) through banks that operate in both. While in

principle this problem can be solved at the county level, doing so is computationally burdensome

given the roughly 3,000 counties in the data. To simplify, we solve for the vector {αi} at the

state level. Throughout our lending analysis, we assume that banks are allowed to lend in any

state where they operate at least one branch.

C.6. Model Extensions: Multiple Assets

This section provides details on the derivations for the model extension for multiple assets

presented in Section 8.1. As mentioned, our baseline model can be extended to include other

assets—beyond cash and deposits—that provide liquidity services. Consider the same composite

goods X and Xi as defined in Equations (41) and (42), respectively. In what follows, we present

the corresponding demand functions for this generalized setting, which nests the cash-only

extension as a special case.

The household’s optimality conditions for Xli and Di yield the inverse demand functions for

liquidity services from asset l and for deposits Di in county i:

R−Rli

R−RX
i

= ζl

(
Xli

Xi

)− 1
ε

and
R−RD

i

R−RX
i

=

(
Di

Xi

)− 1
ε

, (C.19)

along with the county-level inverse demand function for liquidity services:

R−RX
i

R−RX
= ϕi

(
Xi

X

)− 1
θ

. (C.20)

From Equation (C.19), we obtain the ratio of county-level deposits to asset Xli as:

Di

Xli

= ζ−εl

(
R−RD

i

R−Rli

)−ε

. (C.21)
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The county-level ideal price index for liquidity services is derived by substituting Equation

(C.19) into the definition of Xi, reproduced below for convenience:

Xi =

(∑
l

ζlX
ε−1
ε

li +D
ε−1
ε

i

) ε
ε−1

=

[
X

ε−1
ε

i (R−RX
i )

ε−1

(∑
l

ζεl (R−Rli)
1−ε + (R−RD

i )
1−ε

)] ε
ε−1

= Xi(R−RX
i )

ε

(∑
l

ζεl (R−Rli)
1−ε + (R−RD

i )
1−ε

) ε
ε−1

.

Rearranging the last expression, we get:

R−RX
i =

(∑
l

ζεl (R−Rli)
1−ε + (R−RD

i )
1−ε

) 1
1−ε

. (C.22)

Similarly, substituting Equation (C.20) into the definition of X from Equation (41), we obtain

the national-level ideal price index for liquidity services:

R−RX =

(∫
ϕθi (R−RX

i )
1−θ di

) 1
1−θ

. (C.23)

Based on the demand for deposits Dij in equation (46), we can compute the elasticity of

deposit demand faced by bank j in market i as:

d lnDij

d ln
(
R−RD

ij

) =− η

[
1−

d ln
(
R−RD

i

)
d ln

(
R−RD

ij

)]− ε

[
d ln

(
R−RD

i

)
d ln

(
R−RD

ij

) − d ln
(
R−RX

i

)
d ln

(
R−RD

ij

)]

− θ

[
d ln

(
R−RX

i

)
d ln

(
R−RD

ij

)] , (C.24)

making it clear that the elasticity of demand is now a weighted average of the three structural

elasticity parameters η, ε, and θ. Further, using (C.22), we can compute:

d ln(R−RX
i )

d ln(R−RD
ij )

=
d ln(R−RD

i )

d ln(R−RD
ij )

·
[

(R−RD
i )

1−ε∑
l ζ

ε
l (R−Rli)1−ε + (R−RD

i )
1−ε

]
=
d ln(R−RD

i )

d ln(R−RD
ij )

·
(
R−RD

i

R−RX
i

)1−ε

. (C.25)
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Substituting (C.25) into the elasticity of deposit demand expression from (C.24), and simplify-

ing, we obtain:

d lnDij

d ln(R−RD
ij )

= −
[
(1− sij)η + sij θ̂i

]
, (C.26)

where we define sij =
d ln(R−RD

i )

d ln(R−RD
ij)

and

θ̂i ≡ ε+ (θ − ε)sDi , with sDi =

(
R−RD

i

R−RX
i

)1−ε

, (C.27)

as expressed in Section 8.1.

C.7. Alternative Model Specifications

Alternative Timing Assumption: Absence of Loan Commitments

We provide further derivations for the model in Section 8.2, which considers a lending technol-

ogy with decreasing marginal returns and assumes that banks do not make ex-ante commitments

to the loans they offer.

For the local-pricing case, each bank j chooses a deposit rate in each market it operates and

its wholesale funding to maximize:

max
{RD

ij}∀i∈Mj
,Hj

E

{∫ 1

0

(
R−RD

ij + zj − κij
)
DijdΛj(i)−

χj
2

(∫ 1

0

DijdΛj(i) +Hj + Ej

)2

+

+ (R + zj)Ej −
(νj
2
Hj

)
Hj

}
, (C.28)

where we have already substituted bank loans with the banks’ balance-sheet constraint Lj =∫ 1

0
DijdΛj(i) + Hj + Ej. After some algebra, we can express the first-order condition with

respect to deposit spreads as:

R−RD
ij +

E (Dij)

E
(
D′
ij

) = kij − E (zj)−
Cov

(
zj,D′

ij

)
E
(
D′
ij

) + χj
E
[(∫ 1

0
DkjdΛj (k) +Hj + Ej

)
D′
ij

]
E
(
D′
ij

) .

We now use the following results (obtained in the derivation of the local-pricing case for our

baseline model):
Dij ′
Dij

=
(η−θ)sij−η
R−RD

ij
and

Cov(DkjΛkj ,DijΛij)
E(DijΛij)

= E (DkjΛkj)
ρikσiσk
µiµk

. Based on these

results, the left-hand side of the previous expression is

R−RD
ij +

E (Dij)

E
(
D′
ij

) =
(
R−RD

ij

) [(η − θ) sij − η + 1

(η − θ) sij − η

]
.
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The last term on the right-hand side can also be re-written as:

χj
E
[(∫ 1

0 DkjdΛj (k) +Hj + Ej

)
D′
ij

]
E
(
D′
ij

) =χj (Hj + Ej) + χj
E
[(∫ 1

0 DkjdΛj (k)
)
D′
ij

]
E
(
D′
ij

)
=χjE (Lj) + χj

Cov
[∫ 1

0 DkjdΛj (k) ,D′
ij

]
E
(
D′
ij

)
≡χjE (Lj)

(
1 + Γ̃ij

)
,

where Γ̃ij ≡ ωDj
∫ 1

0
ωkj

ρikσiσk
µiµk

dΛj (k). Lastly, we use the fact that Dij = ψηij

(
R−RD

i

R−RD
ij

)η
Di and

Di = ϕθi ×
(
R−RD

R−RD
i

)θ
×D to rewrite the

Cov(zj ,D′
ij)

E(D′
ij)

as

Cov
(
zj,D′

ij

)
E
(
D′
ij

) =
Cov (zj,Dij)

E (Dij)
=

Cov
(
zj, ψ

η
ij

(
R−RD

i

R−RD
ij

)η
ϕθi ×

(
R−RD

R−RD
i

)θ
×D

)
E
(
ψηij

(
R−RD

i

R−RD
ij

)η
ϕθi ×

(
R−RD

R−RD
i

)θ
×D

) =
Cov

(
zj, ϕ

θ
i

)
µi

.

Combining all these expressions, we get a pricing equation for deposit spreads,

R−RD
ij =

η (1− sij) + θsij
η (1− sij) + θsij − 1

[
kij − E (zj) + χjE (Lj)

(
1 + Γ̃ij

)
−

Cov
(
zj, ϕ

θ
i

)
µi

]
,

which is Equation (49) in the main text.

Under uniform pricing, the bank’s problem is analogous to that in Equation (C.28), with the

additional condition that RD
ij = RD

j , for every location i ∈ Mj. After some algebra, one can

show that the first-order condition with respect to deposit spreads is:

R−RD
j +

E
(∫ 1

0
DijdΛj (i)

)
E
(∫ 1

0
D′
ijdΛj (i)

) =κj − E (zj)−
Cov

(
zj,
∫ 1

0
D′
ijdΛj (i)

)
E
(∫ 1

0
D′
ijdΛj (i)

) +

+ χj
E
[(∫ 1

0
DκjdΛj (k) +Hj + Ej

)
D′
ij

]
E
(
D′
ij

) ,

where κj ≡
∫ 1

0
κij

E(D′
ij)dΛj(i)∫ 1

0 E(D′
ij)dΛj(i)

. Following the same derivation as in our baseline model, the

left-hand side of the previous equation is given by:

R−RD
ij +

E
(∫ 1

0
DijdΛj (i)

)
E
(∫ 1

0
D′
ijdΛj (i)

) =
(
R−RD

ij

) [ η (1− sj) + θsj
η (1− sj) + θsj − 1

]
.
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Based also on an analogous derivation to our baseline uniform-pricing case, the last term on

the right hand side can be expressed as:

χj
E
[(∫ 1

0
DkjdΛj (k) +Hj + Ej

)
D′
ij

]
E
(
D′
ij

) ≡ χjE (Lj)
(
1 + Γ̃j

)
,

where

Γ̃j ≡ ωDj

∫
k∈Mj

ω̃kj

∫
i∈Mj

ωij
ρikσiσk
µiµk

di dk.

Lastly, working with the covariance term between loan returns and deposit demand:

Cov
(
zj,
∫ 1

0
D′
ijdΛj (i)

)
E
(∫ 1

0
D′
ijdΛj (i)

) =

∫ 1

0
Cov

(
zj,D′

ij

)
dΛj (i)∫ 1

0
ED′

ijdΛj (i)

=

∫ 1

0

[(η − θ) sij − η]E (Dij)∫ 1

0
[(η − θ) sij − η]E (Dij) dΛj (i)

Cov (zj,Dij)

E (Dij)
dΛj (i)

=

∫ 1

0

ω̃ij
Cov (zj,Dij)

E (Dij)
dΛj (i)

=

∫ 1

0

ω̃ij
Cov

(
zj, ϕ

θ
i

)
µi

dΛj (i) ,

where ω̃ij ≡ [(η−θ)sij−η]E(DijΛj(i))∫ 1
0 [(η−θ)skj−η]E(DkjΛj(k))

. Combining all these results, the pricing equation under

uniform pricing is then:

R−RD
j =

η (1− sj) + θsj
η (1− sj) + θsj − 1

[
κj − E (zj) + χjE (Lj)

(
1 + Γ̃j

)
−
∫ 1

0

ω̃kj
Cov

(
zj, ϕ

θ
k

)
µk

dΛj (k)

]
,

which is Equation (50) in the main text.

Banks’ Risk Aversion or Regulatory Constraints

Given the timing assumption of the previous subsection, one can obtain similar pricing equa-

tions without the need to assume diminishing marginal returns on lending. For instance, another

mechanism that gives rise to risk premia is a case in which banks penalize the variance of de-

posits, due to their own preferences or some regulatory constraint. For ease of exposition, we

assume bank j simply dislikes variability in deposits. Moreover, we assume that there are no

equity, wholesale, or inter-bank lending markets. In this scenario, the problem of the bank can

be expressed by the following maximization problem:

max
{R−RD

ij}∀i∈Mj

E
∫ 1

0

(
R + zj −RD

ij

)
Dij dΛj(i)−

χj
2
V
[∫ 1

0

Dij dΛj(i)

]
.
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Under this alternative problem, one can show that optimal spreads are given by

R−RD
ij =

η (1− sij) + θsij
η (1− sij) + θsij − 1

[
κij − zj + χjE (Dj)

∫
k∈Mj

ωkj
ρikσiσk
µiµk

dk

]
,

which analogous to the pricing equation of our baseline model.

C.8. Solution Algorithm

Below, we outline the algorithm developed to solve the model and conduct counterfactual

analysis. The algorithm is iterative, designed to determine the equilibrium prices and allocations

given the model parameters and a vector of {ϕit} shocks. We describe the algorithm specifically

for the local-pricing case, but the methodology for the uniform-pricing scenario follows a similar

structure and can be adapted accordingly.

(1) Guess spreads
(
R−RD

ijt

)(0)
for each bank-county pair ij.

(2) Given these guesses, use the ideal price indexes to compute R−RD
it and R−RD

t .

(3) Compute aggregate deposits Dt and, with that, county-level expected deposits:

E [Di] = µi

(
R−RD

t

R−RD
it

)θ
Dt.

(4) Use the results from the previous step to compute bank-county expected deposits:

E [Dij] = ψηij

(
R−RD

it

R−RD
ijt

)η
E [Di] ,

and

E (Dj) =
∑
i∈Mj

E [Dij]

(5) Since in our main estimation we imposed that χ = χjE (Dj) for every bank j, we need

to update the χj coefficient, given the newly updated value for E (Dj), computed in the

previous step. That is, χj =
χ

E(Dj)
.

(6) Back out the market shares sij = ψηij

(
R−RD

ij

R−RD
i

)1−η
and compute the markups

MKPij =
η (1− sij) + θsij

η (1− sij) + θsij − 1
.
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(7) Based on the estimated variance-covariance matrix for county-level shocks, compute the

model-implied measure of risk

Γij =
∑
k∈Mj

ωDkj
ρikσiσk
µiµk

.

(8) Use the risk-premium measure to update banks’ marginal costs of providing deposits:

MCij = (kij − zj) + χj E (Dj) Γij.

(9) Based on the markups and the marginal costs computed in the previous step, update

deposit spreads using the model’s pricing equation:(
R−RD

ijt

)(1)
=MKPij ×MCij.

(10) The algorithm iterates, updating the spreads until convergence is achieved. Convergence

is determined when the changes in the deposit spreads between iterations are sufficiently

small.

Appendix D. Additional Results

D.1. Estimation of χ by Bank Group

In the main text, we estimated a common χ parameter across all banks. Here, we relax

that assumption and allow χ to vary with bank size. Specifically, we consider a more flexible

specification in which banks are sorted into bins based on their total deposits, and χ is estimated

separately for each group—using Equation (30) from the main text. Results are presented in

Figure D.1. Overall, the magnitude of the estimates closely aligns with those in Table 5. If

anything, we find that χ tends to increase modestly with bank size, particularly under the local

pricing specification.
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Figure D.1. Estimated χ Coefficient, by Bank Group

(a) Local Pricing (b) Uniform Pricing

Notes: The figure displays estimates of χ across bank size bins, where size is defined by total loans. For
example, the “> 10pp” bin includes banks with total loans greater than the 10th percentile. Dashed lines show
90% confidence intervals. In the local-pricing specification, standard errors are clustered at the county-year
level.

D.2. Changes Across Time under Local Pricing

In this section, we extend the analysis from Subsection 5.2 by examining changes in deposit

spreads between 1993 and 2019 under local pricing. Figure D.2 shows that the results are

broadly similar to those under uniform pricing: smaller counties experience larger declines in

risk premia, primarily driven by greater diversification among banks. As in the uniform case,

most of the reduction in risk stems from changes along the extensive margin—i.e., bank entry

and exit—as shown in Panels C and D. Markups, in turn, exhibit only modest variation across

the county distribution. Unlike the uniform-pricing case, however, markups for the smallest

counties increase by as much as 5%.
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Figure D.2. Changes in (log) Spreads, 1993-2019, by County - Local Pricing

(a) Markups and Risk Premia (b) Diversification

(c) New entrants vs incumbents (d) Out-of-state Banks

Notes: Following the decomposition in Equation (32), Panel (A) shows changes in the markup and risk pre-
mium components of deposit spreads between 1993 and 2019 by county income decile, under the local-pricing
specification. Blue dots represent changes in risk premia, while red dots indicate changes in markups. Panel
(B) further decomposes the change in risk premia into contributions from diversification gains, as defined in
Equation (33). Panel (C), based on Equation (34), separates the contributions of the extensive margin—i.e.,
bank entry and exit—from those of surviving incumbents. Panel (D) provides a more detailed breakdown of
the extensive margin, isolating the roles of out-of-state entrants and exiters. Units are log points ×100.

D.3. Decomposition of Changes in Aggregate Spreads - Shares

Table 6 in the main text presents an aggregate decomposition of the change in deposit spreads

between 1993 and 2019, separating the contributions from changes in markups and risk premia.

Appendix Table D.1 expresses these contributions as shares of the total observed change in

spreads over the period. Since deposit spreads declined during this time, positive (negative)

values indicate components that contributed to lowering (raising) spreads.
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Table D.1. Share of Total Change in Spreads

Uniform pricing Local Pricing

Risk Premium Markup Net Risk Premium Markup Net
Total Diver Total Diver

National Level
Aggregate 6.9% 8.5% -4.8% 2.1% 6.6% 7.4% -5.5% 1.1%

Aggregate (fixed shares) 11.2% 9.0% -2.4% 8.8% 11.6% 8.8% -1.4% 10.2%

By Group of Counties
Small Counties (<p10) 74.1% 19.3% 19.0% 93.0% 59.8% 26.1% 3.6% 63.4%

Medium Counties 32.3% 16.6% 6.2% 38.4% 29.1% 18.9% 2.5% 31.6%
Large Counties (>p90) 7.7% 9.1% -3.2% 4.5% 8.6% 7.5% -0.4% 8.2%

Notes: The table decomposes the change in log aggregate spreads, ln(R − RD) × 100, from 1993 to 2019 into
markup and risk premium components, using Equation (35). The row labeled ‘fixed si shares’ holds county
weights fixed at their 1993 levels. The ‘Diver’ column reports the portion of the risk premium change attributable
to diversification. The last three rows present results by county income groups: small (bottom 10th percentile),
medium (45th-55th percentiles), and large (top 10th percentile). Each component is expressed as a share of the
total change in spreads. Since spreads declined over this period, positive (negative) values indicate a contribution
to reducing (increasing) spreads.

D.4. Alternative Definition of Local Markets: MSA Regions

In this section, we consider an alternative definition of a local market. While our baseline

analysis defines markets at the county level, we now repeat the analysis using Metropolitan

Statistical Areas (MSAs) as the unit of local markets. All baseline results remain robust under

this alternative market definition. Panels A and B of Figure D.3 show cross-sectional patterns

for risk premia and markups in 2019. Panels C and D show a decomposition of changes in

deposit spreads between 1993 and 2019.
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Figure D.3. Contributions of Risk Premia and Markups to (log) Spreads,
MSA-level Analysis

Cross-sectional Patterns (2019)

(a) Risk Premia (b) Markups

Changes across Time (1993 vs. 2019)

(c) Markups and Risk Premia (d) Diversification Component

Notes: Based on the decomposition in Equation (31), Panels (A) and (B) display the markup and risk premium
components of deposit spreads by MSA income in 2019. Blue dots represent results under uniform pricing, while
red squares correspond to the local-pricing case. Using Equation (32), Panel (C) shows changes in markups and
risk premia between 1993 and 2019 across MSA income deciles under uniform pricing. Blue dots show model-
implied changes in risk premia, while red dots indicate changes in markups. Panel (D) further decomposes the
change in risk premia into contributions from diversification gains, as defined in Equation (33). Units are log
points ×100.
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D.5. On the Role of Online Banking and Central Booking

In our baseline analysis, we include all banks reporting deposit holdings in the SOD dataset.

However, some of these institutions may operate primarily online, making the geographic loca-

tion of their branches less relevant for assessing regional risk and market concentration. For ex-

ample, banks like Ally Bank serve customers nationwide despite having limited physical branch

networks. Nonetheless, research covering our period of analysis indicates that, despite the grow-

ing relevance of online banking, households continued to rely heavily on physical branches. In

the 2000s and 2010s, for instance, the number of branches declined only slightly (Amel et al.,

2008; Anenberg et al., 2018; Sakong and Zentefis, 2023). A 2019 FDIC survey reported that

approximately 83% of banked households had visited a bank branch in the past 12 months, and

that local banking—i.e., through tellers or ATMs—remained the primary access point during

2015-2019.59

A second concern is that some banks may not report deposit holdings at the branch level

consistently, instead aggregating all deposits under a single branch—a practice known as central

booking. This can distort the measurement of local deposit concentration and geographic risk

exposure.

In this section, we refine our sample to exclude banks likely to fall into these categories. First,

we exclude counties where the ratio of deposits to total income is more than 10 times the 99th

percentile. Second, within the top 1% of banks by total deposits, we exclude those that report

over 99% of their deposits in a single county. In 2019, approximately 15% of total deposits meet

either of these criteria. In contrast, this share was less than 5% in the early 1990s, pointing to

a growing prevalence of either online banking or central booking over time.

Figure D.4 presents a decomposition of deposit spreads after excluding banks that appear

to rely on online operations or central booking. Our baseline findings remain robust to these

adjustments.

59See https://www.fdic.gov/analysis/household-survey/2019/index.html.

https://www.fdic.gov/analysis/household-survey/2019/index.html
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Figure D.4. Contributions of Risk Premia and Markups to (log) Spreads,
Excluding Online Banks and Banks with Central Booking Practice

Cross-sectional Patterns (2019)

(a) Risk Premia (b) Markups

Changes across Time (1993 vs. 2019)

(c) Markups and Risk Premia (d) Diversification Component

Notes: Panels (A) and (B) display the markup and risk premium components of deposit spreads by county
income in 2019. Blue dots represent results under uniform pricing, while red squares correspond to the local-
pricing case. Using Equation (32), Panel (C) shows changes in markups and risk premia between 1993 and 2019
across county income deciles under uniform pricing. Blue (red) dots show changes in risk premia (markups).
Panel (D) further decomposes the change in risk premia into contributions from diversification gains, as defined
in Equation (33). Data is adjusted to exclude online banks and banks employing central booking practices.
Units are log points ×100.

D.6. Additional Figures and Tables for the Counterfactual Analysis

In this section, we provide additional results for our counterfactual analysis. We start by

considering additional exercises for the uniform pricing case. Then, we show how the counter-

factuals reported in the main text change under local pricing.

Under a uniform-pricing assumption, in Table D.2, we examine the impact of a 1 pp increase

in kj for local, regional, and national banks. We find that when local banks experience higher

costs, small counties see a notable reduction in risk premia, as market shares shift toward
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more diversified regional and national banks. In contrast, higher costs for larger banks lead

to increased risk premia, amplifying the initial cost shock. Second, we study how changes in

households’ relative preferences across bank types affect deposit spreads and risk premia by

reducing the relative demand shifter (ψij) for each bank type separately. In all cases, we re-

normalize ψij so that
∑

j ψ
η
ijt = 1. When households’ preferences shift away from local banks,

regional and national banks gain market share, resulting in lower risk premia, particularly in

small and medium-sized counties.

Table D.2. Additional Counterfactuals: Cost and Demand Shocks

∆ Deposit Spreads Risk Premia Markups

Small Medium Large Small Medium Large Small Medium Large

A. Increase in kij
A.1 Local banks 57.23 26.00 6.84 -23.12 -5.57 -0.61 0.10 0.03 0.52
A.2 Regional banks 14.86 17.24 9.00 2.37 1.11 -0.05 0.60 0.42 0.51
A.3 National banks 9.14 15.84 39.34 5.49 4.13 1.51 0.16 0.44 -0.51

B. Decrease in ψij
B.1 Local banks 1.72 3.01 1.65 -4.24 -4.15 -0.58 0.82 0.28 0.67
B.2 Regional banks 2.00 1.85 1.95 4.44 2.73 0.06 0.94 0.80 0.74
B.3 National banks 0.84 0.78 -1.71 1.58 3.85 3.78 0.21 0.67 -0.57

Notes: The table reports log changes in deposit spreads, risk premia, and markups under uniform pricing for
two additional counterfactuals, relative to the baseline results for 2019. Columns present average changes across
three county groups—small, medium, and large—classified by total income. Panel A considers an increase in
the cost parameter kj , applied separately to local, regional, and national banks. Panel B varies the bank-county
demand shifter ψij by bank type to reflect changes in households’ relative preferences. Units are log points
×100.

Table D.3 presents the same set of counterfactuals as in the main text, but under the local-

pricing specification. In this case, and specifically for the M&A counterfactuals, we take a

different approach by assuming that the acquiring bank inherits the non-interest cost structure

of the acquired branch (i.e., its kij), rather than holding fixed the acquirer’s cost parameter kj

as under uniform pricing. As a result, we observe a decline in deposit spreads following M&A

exercises where the acquiring bank is either a top regional or top national institution. Aside

from this difference, the risk premia channel—the key object of our study—remains similar in

magnitude to that described in the main text.
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Table D.3. Counterfactuals under Local Pricing

∆ Deposit Spreads Risk Premia Markups

Small Medium Large Small Medium Large Small Medium Large

A. Higher curvature
Increase χi 3.45 1.28 0.33 3.93 1.49 0.36 -0.00 -0.01 0.00

B. M&A, acquired bank: 1-location bank
Acquirer bank:
B.1 Top local bank 2.81 0.81 -0.04 -1.17 0.08 0.08 1.17 0.44 0.04
B.2 Top regional bank -5.24 -1.16 -0.03 -4.29 -0.38 0.02 0.82 0.43 0.02
B.3 Top national bank -12.37 -2.95 0.28 -14.18 -1.81 0.09 1.93 0.68 0.07

C. M&A, acquired bank: 2-location bank
Acquirer bank:
C.1 Top local bank 6.74 2.47 0.02 -2.56 0.46 0.23 3.12 1.20 0.13
C.2 Top regional bank -5.62 -1.12 0.12 -6.98 -0.23 0.18 2.00 1.26 0.11
C.3 Top national bank -25.10 -5.37 0.34 -36.07 -4.22 -0.07 4.09 1.93 0.20

D. Changes in demographics
D.1 Increase µi -9.30 -3.36 -0.00 -9.03 -3.18 -0.04 0.04 0.02 -0.00
D.2 Increase σi / µi 0.84 0.49 3.51 0.84 0.48 2.85 -0.00 -0.00 0.02

Notes: The table reports log changes in deposit spreads, risk premia, and markups relative to the 2019 baseline.
Columns display average changes for three groups of counties—small, medium, and large—classified by total
income. Panel A shows the effect of increasing the curvature parameter χ in banks’ profit functions. Panels B
and C report outcomes under different merger and acquisition scenarios (see main text for details). Panel D
examines the impact of demographic shifts. All results correspond to the local-pricing specification. Units are
log points ×100.

We also examine changes in local lending under local pricing. We begin with the counterfac-

tual scenario in which banks’ curvature parameter χ increases (Panel A of Figure D.5). Despite

the different pricing protocol, the effects are broadly consistent with those in the main text.

Next, we consider the M&A counterfactual in which local banks—defined as those operating

in a single county—are acquired by the largest regional banks (Panel B of Figure D.5). The

overall patterns closely mirror those observed under uniform pricing.
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Figure D.5. Changes in Lending and Deposit Spreads under Local Pricing

(a) Higher Bank Curvature

∆ Deposit Spreads ∆ Deposits ∆ Loans

(b) Mergers and Acquisition

∆ Deposit Spreads ∆ Loans, Total ∆ Loans, Reallocation

Notes: The maps display state-level changes in deposit spreads (under local pricing) and lending for two
counterfactual experiments. Panel (A) shows the effects of an increase in the curvature parameter χ. The left
panel shows changes in deposit spreads, the middle panel shows change in expected deposits, and the right panel
shows changes in loans. Panel (B) presents results from an M&A scenario in which top regional banks acquire
banks operating in a single market. The left panel displays changes in deposit spreads following the mergers,
the middle panel shows the total change in lending, and the right panel isolates the portion attributable to the
“reallocation channel.” Units are log points ×100.

D.7. Estimating Elasticity of Substitution with Cash

This section provides details on the procedure used to estimate the reduced-form elasticity of

the cash-to-deposits ratio, Mt/Dt, with respect to the net rate of return, Rt− 1. This elasticity

is used in Section 8.1 as a target to calibrate the structural elasticity parameter ε. To estimate

the reduced-form elasticity, we run an IV regression of ∆ ln(Mt/Dt) onto ∆ ln(Rt − 1), using

monetary policy shocks as an instrument for the latter.

Data on households’ holdings of cash and deposits are obtained from the Board of Governors’

Financial Accounts of the United States (Z.1). We define cash as “Checkable deposits and

currency” (FL153020005), and deposits as “Total time and savings deposits” (FL153030005),
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Table D.4. Elasticity of Cash-to-deposits with Respect to Rt

(1) (2) (3) (4)

̂∆ ln(Rt − 1) −1.38∗∗∗ −1.08∗∗∗ −1.66∗∗ −1.59∗∗

(0.27) (0.30) (0.71) (0.73)

Shock JK PC1 JK PC1
Exclude GFC Yes Yes No No
Controls Yes Yes Yes Yes
F-stat (1st stage) 15.44 11.64 13.73 8.88
Observations 24 24 30 30

Notes: The table reports estimates of the elasticity of the cash-to-deposits ratio with respect to Rt, using
annual data from 1990 to 2019. Columns 1 and 2 exclude the 2008-2013 period. “PC1” refers to the first
principal component of surprises in interest rate derivatives with maturities from 1 month to 1 year (MP1, FF4,
ED2, ED3, ED4). “JK” denotes the monetary policy shock series adjusted to exclude news components around
FOMC announcements, as in Jarociński and Karadi (2020). Standard errors are robust to heteroskedasticity.

both from the “Households and nonprofit organizations” sector.60 We consider two measures

of the monetary policy shock FFt, both constructed by Jarociński and Karadi (2020).61 The

first measure (“PC1”) is the first principal component of surprises in interest rate derivatives

with maturities ranging from 1 month to 1 year (MP1, FF4, ED2, ED3, ED4). The second

measure (“JK”) adjusts the surprise to remove any news component present during FOMC

announcements. All data are aggregated to yearly frequency.

The exclusion restriction is that changes in Rt−1 induced by these shocks are not systemati-

cally related to households’ preferences for cash relative to deposits (i.e., to the share parameter

ζ). The two-stage IV regression is:

∆ ln(Rt − 1) = βR0 + βR1 FFt−k + β′Xt + ϵRt , (D.1)

∆ ln

(
Mt

Dt

)
= γM0 + γM1

̂∆ ln(Rt − 1) + γ ′Xt + uMt . (D.2)

where FFt−k is the monetary policy shock and Xt is a vector of controls (specifically, the

lagged values of both dependent variables). The coefficient of interest is γM1 , which captures

how instrumented changes in ln(Rt − 1) translate into changes in ln(Mt/Dt).

Table D.4 reports the estimates for γM1 across various specifications for the period 1990-2019.

The first two columns exclude the Great Financial Crisis period (2008-2013), while the last

two use the full sample. The point estimates are both economically and statistically significant

60Note that this aggregate is not the same as the model-implie aggregate Dt. Accordingly, for the purposes of
calibration, we construct the same object in the model by summing up deposits.
61Data source: https://github.com/marekjarocinski/jkshocks_update_fed.

https://github.com/marekjarocinski/jkshocks_update_fed
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across all specifications, ranging from −1.1 to −1.6. Standard errors are heteroskedasticity-

robust, and F-statistics confirm the relevance of the instruments. While not shown, the first-

stage estimates for βR1 are also positive and statistically significant. We adopt a target reduced-

form elasticity of −1.3, approximately the midpoint of the range of estimates in the table.
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